Multivariable regulation in geometric terms: Old and new results

The aim of this lecture is to present some well-known and some new results in multivariable regulation in a strictly geometric framework, each compared with the corresponding single-variable result approached with the standard transfer function techniques. It consists of three parts, each necessary for a clear presentation of the subsequent one: a selection of the basic tools, a survey of the solution of the asymptotically robust autonomous regulator problem with the internal model of the exosystem, and a presentation of the “steering along zeros technique” to obtain multivariable perfect tracking in the minimum-phase case or almost perfect tracking by using preaction in the nonminimum-phase case.

[1]  M.K.K. Cevik,et al.  The regulator problem with robust stability , 1993 .

[2]  R. Varga,et al.  Proof of Theorem 4 , 1983 .

[3]  E. Davison,et al.  Properties and calculation of transmission zeros of linear multivariable systems , 1974, Autom..

[4]  Aurelio Piazzi,et al.  Feedback Systems Stabilizability in Terms of Invariant Zeros , 1992 .

[5]  E. Davison The robust control of a servomechanism problem for linear time-invariant multivariable systems , 1976 .

[6]  W. M. Wonham Geometric State-Space Theory in Linear Multivariable Control: A Status Report , 1978 .

[7]  B. Molinari Structural invariants of linear multivariable systems , 1978 .

[8]  Giovanni Marro,et al.  On the robust controlled invariant , 1987 .

[9]  G. Marro,et al.  Using preaction with infinite or finite preview for perfect or almost perfect digital tracking , 1996, Proceedings of 8th Mediterranean Electrotechnical Conference on Industrial Applications in Power Systems, Computer Science and Telecommunications (MELECON 96).

[10]  W. Wonham Tracking and Regulation in Linear Multivariable Systems , 1973 .

[11]  Bruce A. Francis,et al.  The internal model principle of control theory , 1976, Autom..

[12]  J. Willems,et al.  Disturbance Decoupling by Measurement Feedback with Stability or Pole Placement , 1981 .

[13]  B. Pasik-Duncan,et al.  Adaptive Control , 1996, IEEE Control Systems.

[14]  Aurelio Piazzi,et al.  A Geometric Approach to Multivariable Perfect Tracking , 1996 .

[15]  E. Mosca Optimal, Predictive and Adaptive Control , 1994 .

[16]  J. M. Schumacher Regulator synthesis using (C,A,B)-pairs , 1982 .

[17]  Graham C. Goodwin,et al.  Digital control and estimation : a unified approach , 1990 .

[18]  Bruce A. Francis,et al.  The multivariable servomechanism problem from the input-output viewpoint , 1977 .

[19]  Satoshi Koizumi,et al.  H ∞ control of railroad vehicle active suspension , 1995 .

[20]  W. Wonham Linear Multivariable Control: A Geometric Approach , 1974 .

[21]  W. Wonham,et al.  Synthesis of multivariable regulators: The internal model principle , 1974 .

[22]  C. Byrnes,et al.  Frequency domain and state space methods for linear systems , 1986 .

[23]  J. Willems Almost invariant subspaces: An approach to high gain feedback design--Part II: Almost conditionally invariant subspaces , 1981 .

[24]  Edward Davison,et al.  The design of controllers for the multivariable robust servomechanism problem using parameter optimization methods , 1980, 1980 19th IEEE Conference on Decision and Control including the Symposium on Adaptive Processes.

[25]  G. Basile,et al.  Controlled and conditioned invariant subspaces in linear system theory , 1969 .

[26]  E. Davison,et al.  Robust control of a general servomechanism problem: The servo compensator , 1975, Autom..

[27]  Karl Johan Åström,et al.  Computer-Controlled Systems: Theory and Design , 1984 .

[28]  B. Francis The linear multivariable regulator problem , 1976, 1976 IEEE Conference on Decision and Control including the 15th Symposium on Adaptive Processes.

[29]  A. Morse,et al.  Decoupling and Pole Assignment in Linear Multivariable Systems: A Geometric Approach , 1970 .

[30]  W. Messner,et al.  Cancellation of Discrete Time Unstable Zeros by Feedforward Control , 1994 .

[31]  G. Basile,et al.  On the observability of linear, time-invariant systems with unknown inputs , 1969 .

[32]  Masayoshi Tomizuka,et al.  Feedforward Controllers for Perfect Tracking that does not Invert Plant Zeros Outside the Unit Disc , 1993 .

[33]  Chi-Tsong Chen,et al.  Linear System Theory and Design , 1995 .

[34]  B. Paden,et al.  Exact output tracking for nonlinear time-varying systems , 1994, Proceedings of 1994 33rd IEEE Conference on Decision and Control.

[35]  Jan C. Willems,et al.  Almost disturbance decoupling with internal stability , 1989 .

[36]  W. Wonham,et al.  Regulation and Internal Stabilization in Linear Multivariable Systems , 1974 .

[37]  W. Wonham,et al.  The role of transmission zeros in linear multivariable regulators , 1975 .

[38]  Aurelio Piazzi,et al.  Regulation Without Transients Under Large Parameter Jumps , 1993 .

[39]  A. S. Morse,et al.  Output Controllability and System Synthesis , 1971 .

[40]  Giovanni Marro,et al.  Self-bounded controlled invariant subspaces: A straightforward approach to constrained controllability , 1982 .

[41]  Johannes Schumacher,et al.  The algebraic regulator problem from the state-space point of view , 1983 .

[42]  Johannes Schumacher,et al.  Almost stabilizability subspaces and high gain feedback , 1984 .

[43]  Alberto Isidori,et al.  Nonlinear control systems: an introduction (2nd ed.) , 1989 .

[44]  G. Basile,et al.  Controlled and conditioned invariants in linear system theory , 1992 .

[45]  Karl Johan Åström,et al.  Adaptive Control , 1989, Embedded Digital Control with Microcontrollers.

[46]  A. Morse,et al.  Status of noninteracting control , 1971 .

[47]  E. Davison,et al.  Perfect control of the robust servomechanism problem , 1987 .

[48]  Jan Willems,et al.  Almost invariant subspaces: An approach to high gain feedback design , 1981, 1981 20th IEEE Conference on Decision and Control including the Symposium on Adaptive Processes.

[49]  Edward J. Davison,et al.  Remark on multiple transmission zeros of a system , 1976, Autom..