Modelling of Lime Kiln Using Subspace Method with New Order Selection Criterion

This paper is taking actual control demand of rotary kiln as background and builds a calcining belt state space model using PO-Moesp subspace method. A novel order-delay double parameters error criterion (ODC) is presented to reduce the modeling order. The proposed subspace order identification method takes into account the influence of order and delay on model error criterion simultaneously. For the introduction of the delay factors, the order is reduced dramatically in the system modeling. Also, in the data processing part sliding-window method is adopted for stripping delay factor from historical data. For this, the parameters can be changed flexibly. Some practical problems in industrial kiln process modeling are also solved. Finally, it is applied to an industrial kiln case.

[1]  B. De Moor,et al.  A unifying theorem for three subspace system identification algorithms , 1994, Proceedings of 1994 American Control Conference - ACC '94.

[2]  Kevin Barraclough,et al.  I and i , 2001, BMJ : British Medical Journal.

[3]  Yi Wang,et al.  Mathematical models and expert system for grate-kiln process of iron ore oxide pellet production (Part I): Mathematical models of grate process , 2012 .

[4]  Dietmar Bauer,et al.  Order estimation for subspace methods , 2001, Autom..

[5]  Mats Viberg,et al.  Subspace-based methods for the identification of linear time-invariant systems , 1995, Autom..

[6]  T. Hikmet Karakoc,et al.  Mathematical modeling of heat recovery from a rotary kiln , 2010 .

[8]  Stéphane Lecoeuche,et al.  Propagator-based methods for recursive subspace model identification , 2008, Signal Process..

[10]  R. Ocampo-Pérez,et al.  Adsorption of Fluoride from Water Solution on Bone Char , 2007 .

[11]  Michel Verhaegen,et al.  Identification of the deterministic part of MIMO state space models given in innovations form from input-output data , 1994, Autom..

[12]  V. Paschkis,et al.  A new theory for a rotary-kiln heat exchanger , 1962 .

[13]  Bin Fang,et al.  Large Margin Subspace Learning for feature selection , 2013, Pattern Recognit..

[14]  Hidenori Kimura,et al.  Recursive 4SID algorithms using gradient type subspace tracking , 2002, Autom..

[15]  B. Moor,et al.  Subspace state space system identification for industrial processes , 1998 .

[16]  Wallace E. Larimore,et al.  Canonical variate analysis in identification, filtering, and adaptive control , 1990, 29th IEEE Conference on Decision and Control.

[17]  Bart De Moor,et al.  N4SID: Subspace algorithms for the identification of combined deterministic-stochastic systems , 1994, Autom..

[18]  Bart De Moor,et al.  A unifying theorem for three subspace system identification algorithms , 1995, Autom..

[19]  D. Bauer Order estimation in the context of MOESP subspace identification methods , 1999, 1999 European Control Conference (ECC).

[20]  Tobias Breiten,et al.  Krylov subspace methods for model order reduction of bilinear control systems , 2010, Syst. Control. Lett..

[21]  L. Mevel,et al.  Fast multi-order computation of system matrices in subspace-based system identification ☆ , 2012 .

[22]  Thomas F. Edgar,et al.  Subspace identification method for simulation of closed‐loop systems with time delays , 2002 .

[23]  Miguel Jerez,et al.  Estimating the system order by subspace methods , 2012, Comput. Stat..

[25]  Patrick Guillaume,et al.  Operational modal parameter estimation of MIMO systems using transmissibility functions , 2014, Autom..

[26]  Michael Nikolaou,et al.  Input design for model order determination in subspace identification , 2003 .

[27]  Mübeccel Demirekler,et al.  Quantitative measure of observability for linear stochastic systems , 2014, Autom..

[28]  H. Akaike A new look at the statistical model identification , 1974 .

[29]  Huaguang Zhang,et al.  Robust Global Exponential Synchronization of Uncertain Chaotic Delayed Neural Networks via Dual-Stage Impulsive Control , 2010, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[30]  Rosenberg J. Romero,et al.  Experimental thermodynamic evaluation for a single stage heat transformer prototype build with commercial PHEs , 2015 .

[31]  E. Ioannidis Akaike’s information criterion correction for the least‐squares autoregressive spectral estimator , 2011 .

[32]  I. Gartshore,et al.  Modelling the Rotary Lime Kiln , 2008 .

[33]  Fan Yang,et al.  Subspace Trajectory Piecewise-Linear Model Order Reduction for Nonlinear Circuits , 2013 .

[34]  Zhang Huaguang,et al.  Modeling, identification, and control of a class of nonlinear systems , 2001, IEEE Trans. Fuzzy Syst..

[35]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.