The impact of paleoclimatic changes on body size evolution in marine fishes

Significance General rules are useful tools for understanding how organisms evolve. Cope’s rule (tendency to increase in size over evolutionary time) and Bergmann’s rule (tendency to grow to larger sizes in cooler climates) both relate to body size, an important factor that affects the biology, ecology, and physiology of organisms. These rules are well studied in endotherms but remain poorly understood among ectotherms. Here, we show that paleoclimatic changes strongly shaped the trajectory of body size evolution in tetraodontiform fishes. Their body size evolution is explained by both Cope’s and Bergmann’s rules, highlighting the impact of paleoclimatic changes on aquatic organisms, which rely on their environment for temperature regulation and are likely more susceptible than terrestrial vertebrates to climatic changes.

[1]  D. Rabosky,et al.  Biodiversity across space and time in the fossil record , 2021, Current Biology.

[2]  T. Yu,et al.  Altitudinal body size variation in Rana kukunoris: the effects of age and growth rate on the plateau brown frog from the eastern Tibetan Plateau , 2021, Ethology Ecology & Evolution.

[3]  G. Ortí,et al.  Phylogenomics and Historical Biogeography of Seahorses, Dragonets, Goatfishes, and Allies (Teleostei: Syngnatharia): Assessing Factors Driving Uncertainty in Biogeographic Inferences. , 2021, Systematic biology.

[4]  Haijun Song,et al.  Phanerozoic paleotemperatures: The earth’s changing climate during the last 540 million years , 2021, Earth-Science Reviews.

[5]  Martin S. Fridson,et al.  Trends , 1948, Bankmagazin.

[6]  G. Ortí,et al.  Evolutionary determinism and convergence associated with water-column transitions in marine fishes , 2020, Proceedings of the National Academy of Sciences.

[7]  W. Salzburger,et al.  The genomic timeline of cichlid fish diversification across continents , 2020, Nature Communications.

[8]  J. Diniz‐Filho,et al.  Macroecology and macroevolution of body size inAnolislizards , 2020 .

[9]  M. Aberhan,et al.  Temperature-related body size change of marine benthic macroinvertebrates across the Early Toarcian Anoxic Event , 2020, Scientific Reports.

[10]  K. Crandall,et al.  Exon probe sets and bioinformatics pipelines for all levels of fish phylogenomics , 2020, bioRxiv.

[11]  N. Heim,et al.  Body size, sampling completeness, and extinction risk in the marine fossil record , 2020, Paleobiology.

[12]  D. S. Johnson,et al.  The fiddler crab, Minuca pugnax, follows Bergmann's rule , 2019, Ecology and evolution.

[13]  Yigang Xu,et al.  Establishing the link between Permian volcanism and biodiversity changes: Insights from geochemical proxies , 2019, Gondwana Research.

[14]  L. H. Liow,et al.  Cope's Rule in a modular organism: Directional evolution without an overarching macroevolutionary trend , 2019, Evolution; international journal of organic evolution.

[15]  J. Rust,et al.  Paleobiology and taphonomy of the pycnodont fish Nursallia gutturosum, based on material from the Latest-Cenomanian-middle Turonian Vallecillo platy limestone, Mexico , 2019, PalZ.

[16]  M. Pinsky,et al.  Greater vulnerability to warming of marine versus terrestrial ectotherms , 2019, Nature.

[17]  R. Stoks,et al.  Temperature variation makes an ectotherm more sensitive to global warming unless thermal evolution occurs , 2019, The Journal of animal ecology.

[18]  T. Yu,et al.  Altitudinal variation in body size in Bufo minshanicus supports Bergmann’s rule , 2019, Evolutionary Ecology.

[19]  P. Martinez,et al.  Shallow water ray-finned marine fishes follow Bergmann’s rule , 2018, Basic and Applied Ecology.

[20]  P. Abellán,et al.  An interspecific test of Bergmann's rule reveals inconsistent body size patterns across several lineages of water beetles (Coleoptera: Dytiscidae) , 2018, Ecological Entomology.

[21]  Pedro L. Godoy,et al.  The multi-peak adaptive landscape of crocodylomorph body size evolution , 2018, BMC Evolutionary Biology.

[22]  M. Rodríguez,et al.  Climate and amphibian body size: a new perspective gained from the fossil record , 2018 .

[23]  N. Rollinson,et al.  Toward a general explanation for latitudinal clines in body size among chelonians , 2018 .

[24]  Nicolás Bellora,et al.  Comprehensive phylogeny of ray-finned fishes (Actinopterygii) based on transcriptomic and genomic data , 2018, Proceedings of the National Academy of Sciences.

[25]  M. Friedman,et al.  The Bolca Lagerstätten: shallow marine life in the Eocene , 2018, Journal of the Geological Society.

[26]  Chao Zhang,et al.  ASTRAL-III: polynomial time species tree reconstruction from partially resolved gene trees , 2018, BMC Bioinformatics.

[27]  L. Rowe,et al.  Temperature‐dependent oxygen limitation and the rise of Bergmann's rule in species with aquatic respiration , 2018, Evolution; international journal of organic evolution.

[28]  B. Faircloth,et al.  Explosive diversification of marine fishes at the Cretaceous–Palaeogene boundary , 2018, Nature Ecology & Evolution.

[29]  G. Tarling,et al.  Southern Ocean Mesopelagic Fish Comply with Bergmann’s Rule , 2017, The American Naturalist.

[30]  W. Liao,et al.  Latitudinal variation in body size in Fejervarya limnocharis supports the inverse of Bergmann’s rule , 2018 .

[31]  S. Susanapallaré An interspecific test of Bergmann ’ s rule reveals inconsistent body size patterns across several lineages of water beetles ( Coleoptera : Dytiscidae ) , 2018 .

[32]  D. Field,et al.  Genomic Signature of an Avian Lilliput Effect across the K‐Pg Extinction , 2018, Systematic biology.

[33]  D. Arcila,et al.  Mass extinction in tetraodontiform fishes linked to the Palaeocene–Eocene thermal maximum , 2017, Proceedings of the Royal Society B: Biological Sciences.

[34]  W. Ripple,et al.  Extinction risk is most acute for the world’s largest and smallest vertebrates , 2017, Proceedings of the National Academy of Sciences.

[35]  J. Waller,et al.  Body size evolution in an old insect order: No evidence for Cope's Rule in spite of fitness benefits of large size , 2017, Evolution; international journal of organic evolution.

[36]  S. Grasby,et al.  On the causes of mass extinctions , 2017 .

[37]  H. Morlon,et al.  Accelerated body size evolution during cold climatic periods in the Cenozoic , 2017, Proceedings of the National Academy of Sciences.

[38]  C. Watt,et al.  Bergmann's rule: a biophysiological rule examined in birds , 2017 .

[39]  I. Morales‐Castilla,et al.  Bergmann's rule in the oceans? Temperature strongly correlates with global interspecific patterns of body size in marine mammals , 2016 .

[40]  L. Costeur,et al.  Testing for Depéret's Rule (Body Size Increase) in Mammals using Combined Extinct and Extant Data , 2015, Systematic biology.

[41]  Alejandro Ordonez,et al.  The influence of paleoclimate on present-day patterns in biodiversity and ecosystems , 2015 .

[42]  L. Sallan,et al.  Body-size reduction in vertebrates following the end-Devonian mass extinction , 2015, Science.

[43]  N. Heim,et al.  Cope’s rule in the evolution of marine animals , 2015, Science.

[44]  A. von Haeseler,et al.  IQ-TREE: A Fast and Effective Stochastic Algorithm for Estimating Maximum-Likelihood Phylogenies , 2014, Molecular biology and evolution.

[45]  G. Ortí,et al.  An evaluation of fossil tip-dating versus node-age calibrations in tetraodontiform fishes (Teleostei: Percomorphaceae). , 2015, Molecular phylogenetics and evolution.

[46]  G. Moreno-Rueda,et al.  Bergmann's Rule rules body size in an ectotherm: heat conservation in a lizard along a 2200‐metre elevational gradient , 2014, Journal of evolutionary biology.

[47]  R. Benson,et al.  Competition and constraint drove Cope's rule in the evolution of giant flying reptiles , 2014, Nature Communications.

[48]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[49]  F. Santini,et al.  A new phylogeny of tetraodontiform fishes (Tetraodontiformes, Acanthomorpha) based on 22 loci. , 2013, Molecular phylogenetics and evolution.

[50]  P. Wainwright,et al.  Phylogeny and tempo of diversification in the superradiation of spiny-rayed fishes , 2013, Proceedings of the National Academy of Sciences.

[51]  Thaine W. Rowley,et al.  The Tree of Life and a New Classification of Bony Fishes , 2013, PLoS currents.

[52]  D. Atkinson,et al.  Warming-induced reductions in body size are greater in aquatic than terrestrial species , 2012, Proceedings of the National Academy of Sciences.

[53]  Liam J. Revell,et al.  phytools: an R package for phylogenetic comparative biology (and other things) , 2012 .

[54]  P. Barrett,et al.  Late Cretaceous–Neogene trends in deep ocean temperature and continental ice volume: Reconciling records of benthic foraminiferal geochemistry (δ18O and Mg/Ca) with sea level history , 2011 .

[55]  Shai Meiri Bergmann's Rule - what's in a name? , 2010, Global Ecology and Biogeography.

[56]  G. Hunt,et al.  Climate‐driven body‐size trends in the ostracod fauna of the deep Indian Ocean , 2010 .

[57]  C. Watt,et al.  Bergmann's rule; a concept cluster? , 2010 .

[58]  J. Albert,et al.  Fossils provide better estimates of ancestral body size than do extant taxa in fishes , 2009 .

[59]  M. Hardman,et al.  The relative importance of body size and paleoclimatic change as explanatory variables influencing lineage diversification rate: an evolutionary analysis of bullhead catfishes (Siluriformes: Ictaluridae). , 2008, Systematic biology.

[60]  A. Rambaut,et al.  BEAST: Bayesian evolutionary analysis by sampling trees , 2007, BMC Evolutionary Biology.

[61]  E. Cope The primary factors of organic evolution , 2007 .

[62]  D. Moen Cope's rule in cryptodiran turtles: do the body sizes of extant species reflect a trend of phyletic size increase? , 2006, Journal of evolutionary biology.

[63]  K. Roy,et al.  Climate change, body size evolution, and Cope's Rule in deep-sea ostracodes , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[64]  F. Santini,et al.  A phylogeny of the families of fossil and extant tetraodontiform fishes (Acanthomorpha, Tetraodontiformes), Upper Cretaceous to Recent , 2003 .

[65]  C. Feldman,et al.  BERGMANN'S RULE IN NONAVIAN REPTILES: TURTLES FOLLOW IT, LIZARDS AND SNAKES REVERSE IT , 2003, Evolution; international journal of organic evolution.

[66]  John P. Huelsenbeck,et al.  MRBAYES: Bayesian inference of phylogenetic trees , 2001, Bioinform..

[67]  N. Loder,et al.  Geographic gradients in body size: a clarification of Bergmann's rule , 1999 .

[68]  J. Sepkoski,et al.  Absolute measures of the completeness of the fossil record , 1999, Nature.

[69]  R. Sibly,et al.  Why are organisms usually bigger in colder environments? Making sense of a life history puzzle. , 1997, Trends in ecology & evolution.

[70]  F. Rantin,et al.  Occurrence of toxins, other than paralysing type, in the skin of Tetraodontiformes fish. , 1997, Toxicon : official journal of the International Society on Toxinology.

[71]  D. Jablonski Body-size evolution in Cretaceous molluscs and the status of Cope's rule , 1997, Nature.

[72]  D. McShea MECHANISMS OF LARGE‐SCALE EVOLUTIONARY TRENDS , 1994, Evolution; international journal of organic evolution.

[73]  T. Garland,et al.  Procedures for the Analysis of Comparative Data Using Phylogenetically Independent Contrasts , 1992 .

[74]  Gerald R. Smith,et al.  Taphonomic bias in fish diversity from Cenozoic floodplain environments , 1988 .

[75]  A. Hallam The causes of mass extinctions. , 1984, Nature.

[76]  S. Stanley,et al.  AN EXPLANATION FOR COPE'S RULE , 1973, Evolution; international journal of organic evolution.

[77]  B. Rensch HISTOLOGICAL CHANGES CORRELATED WITH EVOLUTIONARY CHANGES OF BODY SIZE , 1948, Evolution; international journal of organic evolution.

[78]  J. M. Cattell,et al.  “The Primary Factors of Organic Evolution” , 1896, Nature.