Synthesis of full-body 3-D human gait using optimal control methods

In this paper we present a method that uses optimal control for offline human gait synthesis that does not depend on motion capture data or task-specific controllers. Our method is based on efficient simulation of rigid multibody systems and a direct multiple-shooting method to solve the underlying space-time optimization problem. We formulated different optimization criteria and synthesized gaits for a fullbody 3-D human model with 34 degrees of freedom and compared the resulting movements with human data. By combining different criteria we are able to improve the similarity of the synthesized motions with respect to recorded human motioncapture motions.

[1]  Hartmut Geyer,et al.  A Muscle-Reflex Model That Encodes Principles of Legged Mechanics Produces Human Walking Dynamics and Muscle Activities , 2010, IEEE Transactions on Neural Systems and Rehabilitation Engineering.

[2]  M. Pandy,et al.  Dynamic optimization of human walking. , 2001, Journal of biomechanical engineering.

[3]  Vladlen Koltun,et al.  Optimizing locomotion controllers using biologically-based actuators and objectives , 2012, ACM Trans. Graph..

[4]  D K Smith,et al.  Numerical Optimization , 2001, J. Oper. Res. Soc..

[5]  Emanuel Todorov,et al.  A convex, smooth and invertible contact model for trajectory optimization , 2011, 2011 IEEE International Conference on Robotics and Automation.

[6]  Jehee Lee,et al.  Simulating biped behaviors from human motion data , 2007, ACM Trans. Graph..

[7]  Ayman Habib,et al.  OpenSim: Open-Source Software to Create and Analyze Dynamic Simulations of Movement , 2007, IEEE Transactions on Biomedical Engineering.

[8]  Aaron Hertzmann,et al.  Feature-based locomotion controllers , 2010, SIGGRAPH 2010.

[9]  Alla Safonova,et al.  Human Motion Synthesis with Optimization‐based Graphs , 2010, Comput. Graph. Forum.

[10]  Jessica K. Hodgins,et al.  Construction and optimal search of interpolated motion graphs , 2007, ACM Trans. Graph..

[11]  S PollardNancy,et al.  Efficient synthesis of physically valid human motion , 2003 .

[12]  David J. Fleet,et al.  Optimizing walking controllers for uncertain inputs and environments , 2010, ACM Trans. Graph..

[13]  Nicolas Pronost,et al.  Interactive Character Animation Using Simulated Physics: A State‐of‐the‐Art Review , 2012, Comput. Graph. Forum.

[14]  H. Bock,et al.  A Multiple Shooting Algorithm for Direct Solution of Optimal Control Problems , 1984 .

[15]  Martin L. Felis,et al.  Modeling Emotional Aspects in Human Locomotion , 2015 .

[16]  Zoran Popovic,et al.  Generalizing locomotion style to new animals with inverse optimal regression , 2014, ACM Trans. Graph..

[17]  U. Ascher,et al.  Stabilization of Constrained Mechanical Systems with DAEs and Invariant Manifolds , 1995 .

[18]  Katja D. Mombaur,et al.  An optimal control approach to reconstruct human gait dynamics from kinematic data , 2015, 2015 IEEE-RAS 15th International Conference on Humanoid Robots (Humanoids).

[19]  Roy Featherstone,et al.  Efficient Factorization of the Joint-Space Inertia Matrix for Branched Kinematic Trees , 2005, Int. J. Robotics Res..

[20]  A. Karpathy,et al.  Locomotion skills for simulated quadrupeds , 2011, ACM Trans. Graph..

[21]  Nancy S. Pollard,et al.  Efficient synthesis of physically valid human motion , 2003, ACM Trans. Graph..

[22]  Vladlen Koltun,et al.  Animating human lower limbs using contact-invariant optimization , 2013, ACM Trans. Graph..

[23]  KangKang Yin,et al.  SIMBICON: simple biped locomotion control , 2007, ACM Trans. Graph..

[24]  P. Leva Adjustments to Zatsiorsky-Seluyanov's segment inertia parameters. , 1996 .

[25]  Zoran Popovic,et al.  Physically based motion transformation , 1999, SIGGRAPH.

[26]  Jovan Popovic,et al.  Adaptation of performed ballistic motion , 2005, TOGS.

[27]  Katja D. Mombaur,et al.  Using optimization to create self-stable human-like running , 2009, Robotica.

[28]  Martin de Lasa,et al.  Feature-based locomotion controllers , 2010, ACM Trans. Graph..

[29]  Kathrin Hatz,et al.  Efficient numerical methods for hierarchical dynamic optimization with application to cerebral palsy gait modeling , 2014 .

[30]  David C. Brogan,et al.  Animating human athletics , 1995, SIGGRAPH.

[31]  Katja D. Mombaur,et al.  Using Optimal Control Methods to Generate Human Walking Motions , 2012, MIG.

[32]  Jessica K. Hodgins,et al.  Synthesizing physically realistic human motion in low-dimensional, behavior-specific spaces , 2004, SIGGRAPH 2004.

[33]  Zoran Popovic,et al.  Contact-aware nonlinear control of dynamic characters , 2009, ACM Trans. Graph..

[34]  Reinhard Blickhan,et al.  Compliant leg behaviour explains basic dynamics of walking and running , 2006, Proceedings of the Royal Society B: Biological Sciences.

[35]  Roy Featherstone,et al.  Rigid Body Dynamics Algorithms , 2007 .

[36]  M. van de Panne,et al.  Generalized biped walking control , 2010, ACM Trans. Graph..

[37]  Jessica K. Hodgins,et al.  Synthesizing physically realistic human motion in low-dimensional, behavior-specific spaces , 2004, ACM Trans. Graph..

[38]  Michiel van de Panne,et al.  Flexible muscle-based locomotion for bipedal creatures , 2013, ACM Trans. Graph..

[39]  Jean-Paul Laumond,et al.  From human to humanoid locomotion—an inverse optimal control approach , 2010, Auton. Robots.

[40]  Jinxiang Chai,et al.  Physically valid statistical models for human motion generation , 2011, TOGS.

[41]  Andrew P. Witkin,et al.  Spacetime constraints , 1988, SIGGRAPH.