Structural neurobiology: missing link to a mechanistic understanding of neural computation

High-resolution, comprehensive structural information is often the final arbiter between competing mechanistic models of biological processes, and can serve as inspiration for new hypotheses. In molecular biology, definitive structural data at atomic resolution are available for many macromolecules; however, information about the structure of the brain is much less complete, both in scope and resolution. Several technical developments over the past decade, such as serial block-face electron microscopy and trans-synaptic viral tracing, have made the structural biology of neural circuits conceivable: we may be able to obtain the structural information needed to reconstruct the network of cellular connections for large parts of, or even an entire, mouse brain within a decade or so. Given that the brain's algorithms are ultimately encoded by this network, knowing where all of these connections are should, at the very least, provide the data needed to distinguish between models of neural computation.

[1]  P. Broca Remarques sur le siège de la faculté du langage articulé, suivies d'une observation d'aphémie (perte de la parole) , 1861 .

[2]  S. R. Cajal Textura del Sistema Nervioso del Hombre y de los Vertebrados, 1899–1904 , 2019 .

[3]  S. Cajal,et al.  Histology of the Nervous System , 1911 .

[4]  J. Brontë Gatenby,et al.  MATURATION OF RAT MAST CELLS , 1966, The Journal of Cell Biology.

[5]  Gray Eg Axo-somatic and axo-dendritic synapses of the cerebral cortex: An electron microscope study , 1959 .

[6]  E. Gray,et al.  Axo-somatic and axo-dendritic synapses of the cerebral cortex: an electron microscope study. , 1959, Journal of anatomy.

[7]  D. Hubel,et al.  Receptive fields, binocular interaction and functional architecture in the cat's visual cortex , 1962, The Journal of physiology.

[8]  A. Seligman,et al.  A NEW STAINING METHOD (OTO) FOR ENHANCING CONTRAST OF LIPID-CONTAINING MEMBRANES AND DROPLETS IN OSMIUM TETROXIDE-FIXED TISSUE WITH OSMIOPHILIC THIOCARBOHYDRAZIDE (TCH) , 1966, The Journal of cell biology.

[9]  M. Colonnier Synaptic patterns on different cell types in the different laminae of the cat visual cortex. An electron microscope study. , 1968, Brain research.

[10]  F. Bloom,et al.  Osmiophilic Polymer Generation: Catalysis by Transition Metal Compounds in Ultrastructural Cytochemistry , 1972, Science.

[11]  M. Hayat,et al.  Principles and Techniques of Electron Microscopy: Biological Applications , 1973 .

[12]  F. G. Zaki Principles and Techniques of Electron Microscopy , 1975 .

[13]  J Walton,et al.  Lead asparate, an en bloc contrast stain particularly useful for ultrastructural enzymology. , 1979, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society.

[14]  T. Reese,et al.  Structural changes after transmitter release at the frog neuromuscular junction , 1981, The Journal of cell biology.

[15]  W. W. Stewart Lucifer dyes—highly fluorescent dyes for biological tracing , 1981, Nature.

[16]  S. B. Leighton SEM images of block faces, cut by a miniature microtome within the SEM - a technical note. , 1981, Scanning electron microscopy.

[17]  Leighton Sb SEM images of block faces, cut by a miniature microtome within the SEM - a technical note. , 1981 .

[18]  S. Brenner,et al.  The structure of the nervous system of the nematode Caenorhabditis elegans. , 1986, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[19]  R. Masland,et al.  Photoconversion of some fluorescent markers to a diaminobenzidine product. , 1988, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society.

[20]  J. Lübke Photoconversion of diaminobenzidine with different fluorescent neuronal markers into a light and electron microscopic dense reaction product , 1993, Microscopy research and technique.

[21]  L. Enquist,et al.  Innervation of the heart and its central medullary origin defined by viral tracing. , 1994, Science.

[22]  R. Guillery Histology of the Nervous System by Santiago Ramón y Cajal. Translated into English from the French edition by Neely Swanson and Larry W. Swanson, Oxford University Press, 1995. $195.00 (1672 pp) ISBN 0 19 507 4017 , 1996, Trends in Neurosciences.

[23]  Nicholas T. Carnevale,et al.  The NEURON Simulation Environment , 1997, Neural Computation.

[24]  S. Hell,et al.  Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[25]  Yasushi Miyashita,et al.  Dendritic spine geometry is critical for AMPA receptor expression in hippocampal CA1 pyramidal neurons , 2001, Nature Neuroscience.

[26]  P. Detwiler,et al.  Directionally selective calcium signals in dendrites of starburst amacrine cells , 2002, Nature.

[27]  Winfried Denk,et al.  Targeted Whole-Cell Recordings in the Mammalian Brain In Vivo , 2003, Neuron.

[28]  E. Marder,et al.  Similar network activity from disparate circuit parameters , 2004, Nature Neuroscience.

[29]  W. Denk,et al.  Serial Block-Face Scanning Electron Microscopy to Reconstruct Three-Dimensional Tissue Nanostructure , 2004, PLoS biology.

[30]  W. Regehr,et al.  Structural contributions to short-term synaptic plasticity. , 2004, Physiological reviews.

[31]  J C Fiala,et al.  Reconstruct: a free editor for serial section microscopy , 2005, Journal of microscopy.

[32]  C. Koch,et al.  Invariant visual representation by single neurons in the human brain , 2005, Nature.

[33]  J. Lippincott-Schwartz,et al.  Imaging Intracellular Fluorescent Proteins at Nanometer Resolution , 2006, Science.

[34]  R. Tsien,et al.  The Fluorescent Toolbox for Assessing Protein Location and Function , 2006, Science.

[35]  N. Kasthuri,et al.  Automating the Collection of Ultrathin Serial Sections for Large Volume TEM Reconstructions , 2006, Microscopy and Microanalysis.

[36]  W. Denk,et al.  Two-photon targeted patching (TPTP) in vivo , 2006, Nature Protocols.

[37]  D. Chklovskii,et al.  Wiring optimization can relate neuronal structure and function. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[38]  Michael L. Hines,et al.  Parallel network simulations with NEURON , 2006, Journal of Computational Neuroscience.

[39]  H. Markram The Blue Brain Project , 2006, Nature Reviews Neuroscience.

[40]  Ian R. Wickersham,et al.  Monosynaptic Restriction of Transsynaptic Tracing from Single, Genetically Targeted Neurons , 2007, Neuron.

[41]  Wolfgang Wintermeyer,et al.  How ribosomes make peptide bonds. , 2007, Trends in biochemical sciences.

[42]  R. W. Draft,et al.  Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system , 2007, Nature.

[43]  N. Kasthuri,et al.  New Technique for Ultra-thin Serial Brain Section Imaging Using Scanning Electron Microscopy , 2007, Microscopy and Microanalysis.

[44]  John Lisman,et al.  Synaptic Strength of Individual Spines Correlates with Bound Ca2+–Calmodulin-Dependent Kinase II , 2007, The Journal of Neuroscience.

[45]  Stephen J. Smith,et al.  Array Tomography: A New Tool for Imaging the Molecular Architecture and Ultrastructure of Neural Circuits , 2007, Neuron.

[46]  Joseph F. Murray,et al.  Supervised Learning of Image Restoration with Convolutional Networks , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[47]  Ullrich Köthe,et al.  Segmentation of SBFSEM Volume Data of Neural Tissue by Hierarchical Classification , 2008, DAGM-Symposium.

[48]  Sriram Subramaniam,et al.  Electron tomography in nanoparticle imaging and analysis. , 2008, Nanomedicine.

[49]  Michael Z. Lin,et al.  Improving the photostability of bright monomeric orange and red fluorescent proteins , 2008, Nature Methods.

[50]  Cori Bargmann,et al.  GFP Reconstitution Across Synaptic Partners (GRASP) Defines Cell Contacts and Synapses in Living Nervous Systems , 2008, Neuron.

[51]  R Angus Silver,et al.  The Contribution of Single Synapses to Sensory Representation in Vivo , 2008, Science.

[52]  G. Knott,et al.  Serial Section Scanning Electron Microscopy of Adult Brain Tissue Using Focused Ion Beam Milling , 2008, The Journal of Neuroscience.

[53]  Volker Busskamp,et al.  Genetically timed, activity-sensor and rainbow transsynaptic viral tools , 2009, Nature Methods.

[54]  Mark Bates,et al.  Super-resolution fluorescence microscopy. , 2009, Annual review of biochemistry.

[55]  W. Senn,et al.  Dendritic encoding of sensory stimuli controlled by deep cortical interneurons , 2009, Nature.

[56]  O. Devinsky,et al.  The excitable cerebral cortex: Fritsch G, Hitzig E. Über die elektrische Erregbarkeit des Grosshirns. Arch Anat Physiol Wissen 1870;37:300–32. , 2009, Epilepsy & Behavior.

[57]  H. Sebastian Seung,et al.  Reading the Book of Memory: Sparse Sampling versus Dense Mapping of Connectomes , 2009, Neuron.

[58]  Michael Brecht,et al.  Head-anchored whole-cell recordings in freely moving rats , 2009, Nature Protocols.

[59]  A. Cardona,et al.  An Integrated Micro- and Macroarchitectural Analysis of the Drosophila Brain by Computer-Assisted Serial Section Electron Microscopy , 2010, PLoS biology.

[60]  K. Harris,et al.  Ultrastructural Analysis of Hippocampal Neuropil from the Connectomics Perspective , 2010, Neuron.

[61]  X. Zhuang,et al.  Superresolution Imaging of Chemical Synapses in the Brain , 2010, Neuron.

[62]  Kristina J. Nielsen,et al.  Targeting Single Neuronal Networks for Gene Expression and Cell Labeling In Vivo , 2010, Neuron.

[63]  Benjamin F. Grewe,et al.  High-speed in vivo calcium imaging reveals neuronal network activity with near-millisecond precision , 2010, Nature Methods.

[64]  Kristina D. Micheva,et al.  Single-Synapse Analysis of a Diverse Synapse Population: Proteomic Imaging Methods and Markers , 2010, Neuron.

[65]  R. Tsien,et al.  Enhancing Serial Block-Face Scanning Electron Microscopy to Enable High Resolution 3-D Nanohistology of Cells and Tissues , 2010 .

[66]  Richard Hans Robert Hahnloser,et al.  Correlative Microscopy of Densely Labeled Projection Neurons Using Neural Tracers , 2010, Front. Neuroanat..

[67]  Hanchuan Peng,et al.  V3D enables real-time 3D visualization and quantitative analysis of large-scale biological image data sets , 2010, Nature Biotechnology.

[68]  Karel Svoboda,et al.  Learning-related fine-scale specificity imaged in motor cortex circuits of behaving mice , 2010, Nature.

[69]  E. Brown,et al.  General anesthesia, sleep, and coma. , 2010, The New England journal of medicine.

[70]  Jianli Li,et al.  Membrane Targeted Horseradish Peroxidase as a Marker for Correlative Fluorescence and Electron Microscopy Studies , 2009, Front. Neural Circuits.

[71]  Ashok Veeraraghavan,et al.  Increasing depth resolution of electron microscopy of neural circuits using sparse tomographic reconstruction , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[72]  V. Brezina Beyond the wiring diagram: signalling through complex neuromodulator networks , 2010, Philosophical Transactions of the Royal Society B: Biological Sciences.

[73]  Benjamin F. Grewe,et al.  High-speed in vivo calcium imaging reveals neuronal network activity with near-millisecond precision , 2010, Nature Methods.

[74]  Joseph F. Murray,et al.  Convolutional Networks Can Learn to Generate Affinity Graphs for Image Segmentation , 2010, Neural Computation.

[75]  Kevin L. Briggman,et al.  Wiring specificity in the direction-selectivity circuit of the retina , 2011, Nature.

[76]  Arthur W. Wetzel,et al.  Network anatomy and in vivo physiology of visual cortical neurons , 2011, Nature.

[77]  Moritz Helmstaedter,et al.  High-accuracy neurite reconstruction for high-throughput neuroanatomy , 2011, Nature Neuroscience.

[78]  Richard Hans Robert Hahnloser,et al.  Projection Neuron Circuits Resolved Using Correlative Array Tomography , 2011, Front. Neurosci..

[79]  Julie H. Simpson,et al.  Drosophila Brainbow: a recombinase-based fluorescent labeling technique to subdivide neural expression patterns , 2011, Nature Methods.

[80]  Andreas T Schaefer,et al.  Transfection via whole-cell recording in vivo: bridging single-cell physiology, genetics and connectomics , 2011, Nature Neuroscience.

[81]  Ericka B. Ramko,et al.  A Genetically Encoded Tag for Correlated Light and Electron Microscopy of Intact Cells, Tissues, and Organisms , 2011, PLoS biology.

[82]  Andreas T. Schaefer,et al.  Two-photon calcium imaging of evoked activity from L5 somatosensory neurons in vivo , 2011, Nature Neuroscience.

[83]  Lav R. Varshney,et al.  Structural Properties of the Caenorhabditis elegans Neuronal Network , 2009, PLoS Comput. Biol..

[84]  Botond Roska,et al.  Spatially asymmetric reorganization of inhibition establishes a motion-sensitive circuit , 2011, Nature.

[85]  Cyrille Alexandre,et al.  Flybow: genetic multicolor cell labeling for neural circuit analysis in Drosophila melanogaster , 2011, Nature Methods.

[86]  Lynn W. Enquist,et al.  A Dual Infection Pseudorabies Virus Conditional Reporter Approach to Identify Projections to Collateralized Neurons in Complex Neural Circuits , 2011, PloS one.

[87]  Stephen J. Smith,et al.  High-contrast en bloc staining of neuronal tissue for field emission scanning electron microscopy , 2012, Nature Protocols.