Limits of the Robustness Paradigm

This chapter discusses the limits of the classical robustness paradigm and set the motivation and ground for the probabilistic approach to analysis and design. In particular, it introduces the notions of complexity, decidability, conservatism and discontinuity problems, with specific emphasis on NP-hard problems arising in the context of control systems, illustrated by several examples.

[1]  Richard D. Braatz,et al.  Computational Complexity of , 2007 .

[2]  Chaouki T. Abdallah,et al.  Robust nonlinear feedback design via quantifier elimination theory , 1997 .

[3]  B. Anderson,et al.  Output feedback stabilization and related problems-solution via decision methods , 1975 .

[4]  Henryk Wozniakowski,et al.  Information-based complexity , 1987, Nature.

[5]  A. Nemirovskii Several NP-hard problems arising in robust stability analysis , 1993 .

[6]  H. Woxniakowski Information-Based Complexity , 1988 .

[7]  James Demmel,et al.  The Componentwise Distance to the Nearest Singular Matrix , 1992, SIAM J. Matrix Anal. Appl..

[8]  B. Ross Barmish,et al.  New Tools for Robustness of Linear Systems , 1993 .

[9]  A. Seidenberg A NEW DECISION METHOD FOR ELEMENTARY ALGEBRA , 1954 .

[10]  Martin D. Davis Hilbert's Tenth Problem is Unsolvable , 1973 .

[11]  Peter M. Young,et al.  Mixed μ problems and branch and bound techniques , 1997 .

[12]  Ju. V. Matijasevic,et al.  ENUMERABLE SETS ARE DIOPHANTINE , 2003 .

[13]  Stephen A. Cook,et al.  The complexity of theorem-proving procedures , 1971, STOC.

[14]  Stephen P. Boyd,et al.  Branch and bound algorithm for computing the minimum stability degree of parameter-dependent linear systems , 1991, International Journal of Robust and Nonlinear Control.

[15]  R. Bellman Dynamic programming. , 1957, Science.

[16]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[17]  K. Goh,et al.  Robust synthesis via bilinear matrix inequalities , 1996 .

[18]  Pramod P. Khargonekar,et al.  Robustness margin need not be a continuous function of the problem data , 1990 .

[19]  A. Tarski A Decision Method for Elementary Algebra and Geometry , 2023 .

[20]  M. Safonov,et al.  Exact calculation of the multiloop stability margin , 1988 .

[21]  P. Dorato,et al.  Quantified multivariate polynomial inequalities. The mathematics of practical control design problems , 2000 .

[22]  O. Toker,et al.  On the complexity of purely complex μ computation and related problems in multidimensional systems , 1998, IEEE Trans. Autom. Control..

[23]  Alfred V. Aho,et al.  The Design and Analysis of Computer Algorithms , 1974 .

[24]  Svatopluk Poljak,et al.  Checking robust nonsingularity is NP-hard , 1993, Math. Control. Signals Syst..

[25]  Alexander Schrijver,et al.  Theory of linear and integer programming , 1986, Wiley-Interscience series in discrete mathematics and optimization.

[26]  Christopher L. DeMarco,et al.  The computational complexity of approximating the minimal perturbation scaling to achieve instability in an interval matrix , 1994, Math. Control. Signals Syst..

[27]  Roberto Tempo,et al.  On the Complete Instability of Interval Polynomials , 2007, Proceedings of the 45th IEEE Conference on Decision and Control.

[28]  John N. Tsitsiklis,et al.  A survey of computational complexity results in systems and control , 2000, Autom..

[29]  Eli Upfal,et al.  Probability and Computing: Randomized Algorithms and Probabilistic Analysis , 2005 .

[30]  M. Morari,et al.  Computational complexity of μ calculation , 1994, IEEE Trans. Autom. Control..