A unified understanding of minimum lattice thermal conductivity

We propose a first-principles model of minimum lattice thermal conductivity ([Formula: see text]) based on a unified theoretical treatment of thermal transport in crystals and glasses. We apply this model to thousands of inorganic compounds and find a universal behavior of [Formula: see text] in crystals in the high-temperature limit: The isotropically averaged [Formula: see text] is independent of structural complexity and bounded within a range from ∼0.1 to ∼2.6 W/(m K), in striking contrast to the conventional phonon gas model which predicts no lower bound. We unveil the underlying physics by showing that for a given parent compound, [Formula: see text] is bounded from below by a value that is approximately insensitive to disorder, but the relative importance of different heat transport channels (phonon gas versus diffuson) depends strongly on the degree of disorder. Moreover, we propose that the diffuson-dominated [Formula: see text] in complex and disordered compounds might be effectively approximated by the phonon gas model for an ordered compound by averaging out disorder and applying phonon unfolding. With these insights, we further bridge the knowledge gap between our model and the well-known Cahill-Watson-Pohl (CWP) model, rationalizing the successes and limitations of the CWP model in the absence of heat transfer mediated by diffusons. Finally, we construct graph network and random forest machine learning models to extend our predictions to all compounds within the Inorganic Crystal Structure Database (ICSD), which were validated against thermoelectric materials possessing experimentally measured ultralow κL. Our work offers a unified understanding of [Formula: see text], which can guide the rational engineering of materials to achieve [Formula: see text].

[1]  N. Marzari,et al.  Wigner Formulation of Thermal Transport in Solids , 2021, Physical Review X.

[2]  Muratahan Aykol,et al.  High-Throughput Study of Lattice Thermal Conductivity in Binary Rocksalt and Zinc Blende Compounds Including Higher-Order Anharmonicity , 2020 .

[3]  G. J. Snyder,et al.  Uncovering design principles for amorphous-like heat conduction using two-channel lattice dynamics , 2020, Materials Today Physics.

[4]  Tianli Feng,et al.  Vibrational hierarchy leads to dual-phonon transport in low thermal conductivity crystals , 2020, Nature Communications.

[5]  V. Ozoliņš,et al.  Microscopic Mechanisms of Glasslike Lattice Thermal Transport in Cubic Cu_{12}Sb_{4}S_{13} Tetrahedrites. , 2020, Physical review letters.

[6]  R. S. Mulik,et al.  Thermal Barrier Coatings—A State of the Art Review , 2020, Metals and Materials International.

[7]  V. Ozoliņš,et al.  Particlelike Phonon Propagation Dominates Ultralow Lattice Thermal Conductivity in Crystalline Tl_{3}VSe_{4}. , 2020, Physical review letters.

[8]  Enamullah,et al.  Unusual lattice thermal conductivity in the simple crystalline compounds TlXTe2(X=Ga,In) , 2019, Physical Review B.

[9]  S. Baroni,et al.  Modeling heat transport in crystals and glasses from a unified lattice-dynamical approach , 2019, Nature Communications.

[10]  N. Marzari,et al.  Unified theory of thermal transport in crystals and glasses , 2019, Nature Physics.

[11]  Chi Chen,et al.  Graph Networks as a Universal Machine Learning Framework for Molecules and Crystals , 2018, Chemistry of Materials.

[12]  Kyle Chard,et al.  Matminer: An open source toolkit for materials data mining , 2018, Computational Materials Science.

[13]  D. Parker,et al.  Two-channel model for ultralow thermal conductivity of crystalline Tl3VSe4 , 2018, Science.

[14]  R. Hanus,et al.  Minimum thermal conductivity in the context of diffuson-mediated thermal transport , 2018 .

[15]  Yue Chen,et al.  High Thermoelectric Performance of Ag9GaSe6 Enabled by Low Cutoff Frequency of Acoustic Phonons , 2017 .

[16]  Terry M. Tritt,et al.  Advances in thermoelectric materials research: Looking back and moving forward , 2017, Science.

[17]  U. Waghmare,et al.  Intrinsic Rattler-Induced Low Thermal Conductivity in Zintl Type TlInTe2. , 2017, Journal of the American Chemical Society.

[18]  Li‐Ming Wu Concerted Rattling in CsAg5Te3 Leading to Ultralow Thermal Conductivity and High Thermoelectric Performance. , 2016 .

[19]  Logan T. Ward,et al.  A General-Purpose Machine Learning Framework for Predicting Properties of Inorganic Materials , 2016, 1606.09551.

[20]  Muratahan Aykol,et al.  The Open Quantum Materials Database (OQMD): assessing the accuracy of DFT formation energies , 2015 .

[21]  I. Tanaka,et al.  First principles phonon calculations in materials science , 2015, 1506.08498.

[22]  S. Tsuneyuki,et al.  Self-consistent phonon calculations of lattice dynamical properties in cubic SrTiO 3 with first-principles anharmonic force constants , 2015, 1506.01781.

[23]  Anubhav Jain,et al.  The Materials Application Programming Interface (API): A simple, flexible and efficient API for materials data based on REpresentational State Transfer (REST) principles , 2015 .

[24]  Haijun Wu,et al.  High thermoelectric performance realized in a BiCuSeO system by improving carrier mobility through 3D modulation doping. , 2014, Journal of the American Chemical Society.

[25]  A. Srivastava,et al.  Thermoelectric properties of Cu3SbSe3 with intrinsically ultralow lattice thermal conductivity , 2014 .

[26]  Wu Li,et al.  ShengBTE: A solver of the Boltzmann transport equation for phonons , 2014, Comput. Phys. Commun..

[27]  A. McGaughey,et al.  Thermal conductivity accumulation in amorphous silica and amorphous silicon , 2014 .

[28]  M. Calandra,et al.  Anharmonic free energies and phonon dispersions from the stochastic self-consistent harmonic approximation: Application to platinum and palladium hydrides , 2013, 1311.3083.

[29]  Kristin A. Persson,et al.  Commentary: The Materials Project: A materials genome approach to accelerating materials innovation , 2013 .

[30]  V. Ozoliņš,et al.  High Performance Thermoelectricity in Earth‐Abundant Compounds Based on Natural Mineral Tetrahedrites , 2013 .

[31]  Anubhav Jain,et al.  Python Materials Genomics (pymatgen): A robust, open-source python library for materials analysis , 2012 .

[32]  G. J. Snyder,et al.  Copper ion liquid-like thermoelectrics. , 2012, Nature materials.

[33]  G. J. Snyder,et al.  Phonon engineering through crystal chemistry , 2011 .

[34]  David J. Singh,et al.  Giant anharmonic phonon scattering in PbTe. , 2011, Nature materials.

[35]  P. B. Allen,et al.  Lattice thermal conductivity: Computations and theory of the high-temperature breakdown of the phonon-gas model , 2010 .

[36]  M. Kanatzidis,et al.  New and old concepts in thermoelectric materials. , 2009, Angewandte Chemie.

[37]  L. Bell Cooling, Heating, Generating Power, and Recovering Waste Heat with Thermoelectric Systems , 2008, Science.

[38]  G. J. Snyder,et al.  Complex thermoelectric materials. , 2008, Nature materials.

[39]  G. Scuseria,et al.  Restoring the density-gradient expansion for exchange in solids and surfaces. , 2007, Physical review letters.

[40]  Paul Zschack,et al.  Ultralow Thermal Conductivity in Disordered, Layered WSe2 Crystals , 2007, Science.

[41]  A. Einstein,et al.  Elementare Betrachtungen über die thermische Molekularbewegung in festen Körpern [AdP 35, 679 (1911)] , 2005, Annalen der Physik.

[42]  David R. Clarke,et al.  Materials selection guidelines for low thermal conductivity thermal barrier coatings , 2003 .

[43]  P. Luksch,et al.  New developments in the Inorganic Crystal Structure Database (ICSD): accessibility in support of materials research and design. , 2002, Acta crystallographica. Section B, Structural science.

[44]  G. Nolas,et al.  Structural disorder and thermal conductivity of the semiconducting clathrate Sr8Ga16Ge30 , 2000 .

[45]  Jaroslav Fabian,et al.  Diffusons, locons and propagons: Character of atomie yibrations in amorphous Si , 1999 .

[46]  P. B. Allen,et al.  Diffusons, Locons, Propagons: Character of Atomic Vibrations in Amorphous Si , 1999, cond-mat/9907132.

[47]  George S. Nolas,et al.  Semiconducting Ge clathrates: Promising candidates for thermoelectric applications , 1998 .

[48]  Wang,et al.  Generalized gradient approximation for the exchange-correlation hole of a many-electron system. , 1996, Physical review. B, Condensed matter.

[49]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[50]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[51]  Hafner,et al.  Ab initio molecular dynamics for liquid metals. , 1995, Physical review. B, Condensed matter.

[52]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[53]  Hafner,et al.  Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. , 1994, Physical review. B, Condensed matter.

[54]  Allen,et al.  Thermal conductivity of disordered harmonic solids. , 1993, Physical review. B, Condensed matter.

[55]  Watson,et al.  Lower limit to the thermal conductivity of disordered crystals. , 1992, Physical review. B, Condensed matter.

[56]  D. Cahill,et al.  Heat flow and lattice vibrations in glasses , 1989 .

[57]  Allen,et al.  Thermal conductivity of glasses: Theory and application to amorphous Si. , 1989, Physical review letters.

[58]  A R Plummer,et al.  Introduction to Solid State Physics , 1967 .

[59]  P. Hohenberg,et al.  Inhomogeneous Electron Gas , 1964 .

[60]  R. Hardy ENERGY-FLUX OPERATOR FOR A LATTICE , 1963 .

[61]  S. Yamanaka,et al.  Ag9TlTe5 and AgTlTe: High ZT Materials With Extremely Low Thermal Conductivity , 2005 .

[62]  Robert O. Pohl,et al.  Lattice Vibrations and Heat Transport in Crystals and Glasses , 1988 .

[63]  G. A. Slack,et al.  The Thermal Conductivity of Nonmetallic Crystals , 1979 .

[64]  G. A. Slack,et al.  Nonmetallic crystals with high thermal conductivity , 1973 .