Extremal Optimization: an Evolutionary Local-Search Algorithm

A recently introduced general-purpose heuristic for finding high-quality solutions for many hard optimization problems is reviewed. The method is inspired by recent progress in understanding far-from-equilibrium phenomena in terms ofself-organized criticality, a concept introduced to describe emergent complexity in physical systems. This method, calledextremal optimization, successively replaces the value of extremely undesirable variables in a sub-optimal solution with new, random ones. Large, avalanche-like fluctuations in the cost function self-organize from this dynamics, effectively scaling barriers to explore local optima in distant neighborhoods of the configuration space while eliminating the need to tune parameters. Drawing upon models used to simulate the dynamics of granular media, evolution, or geology, extremal optimization complements approximation methods inspired by equilibrium statistical physics, such assimulated annealing. It may be but one example of applying new insights intonon-equilibrium phenomenasystematically to hard optimization problems. This method is widely applicable and so far has proved competitive with — and even superior to — more elaborate general-purpose heuristics on testbeds of constrained optimization problems with up to 105variables, such as bipartitioning, coloring, and satisfiability. Analysis of a suitable model predicts the only free parameter of the method in accordance with all experimental results.

[1]  Bak,et al.  Punctuated equilibrium and criticality in a simple model of evolution. , 1993, Physical review letters.

[2]  Peter C. Cheeseman,et al.  Where the Really Hard Problems Are , 1991, IJCAI.

[3]  Alistair I. Mees,et al.  Convergence of an annealing algorithm , 1986, Math. Program..

[4]  D. Turcotte,et al.  Self-organized criticality , 1999 .

[5]  Ehl Emile Aarts,et al.  Statistical cooling : a general approach to combinatorial optimization problems , 1985 .

[6]  C. Reeves Modern heuristic techniques for combinatorial problems , 1993 .

[7]  Károly F. Pál,et al.  The ground state energy of the Edwards-Anderson Ising spin glass with a hybrid genetic algorithm , 1996 .

[8]  A. Percus,et al.  Nature's Way of Optimizing , 1999, Artif. Intell..

[9]  D. E. Goldberg,et al.  Genetic Algorithms in Search , 1989 .

[10]  Mark Fielding,et al.  Simulated Annealing With An Optimal Fixed Temperature , 2000, SIAM J. Optim..

[11]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[12]  Stefan Boettcher,et al.  Extremal Optimization: Methods derived from Co-Evolution , 1999, GECCO.

[13]  Robin P. Fawcett,et al.  Theory and application , 1988 .

[14]  M. Mézard,et al.  Spin Glass Theory and Beyond , 1987 .

[15]  Alex M. Andrew,et al.  Modern Heuristic Search Methods , 1998 .

[16]  Stefan Boettcher,et al.  Extremal Optimization for Graph Partitioning , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[17]  Cecilia R. Aragon,et al.  Optimization by Simulated Annealing: An Experimental Evaluation; Part I, Graph Partitioning , 1989, Oper. Res..

[18]  Tad Hogg,et al.  Phase Transitions in Artificial Intelligence Systems , 1987, Artif. Intell..

[19]  Stefan Boettcher,et al.  Optimization with Extremal Dynamics , 2000, Complex..

[20]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[21]  H. Cohn,et al.  Simulated Annealing: Searching for an Optimal Temperature Schedule , 1999, SIAM J. Optim..

[22]  Stefan Boettcher Extremal Optimization: Heuristics Via Co-Evolutionary Avalanches , 2000, Comput. Sci. Eng..

[23]  Silvano Martello,et al.  Meta-Heuristics: Advances and Trends in Local Search Paradigms for Optimization , 2012 .

[24]  Faster Monte Carlo simulations at low temperatures. The waiting time method , 2001, cond-mat/0107475.

[25]  A. B. Bortz,et al.  A new algorithm for Monte Carlo simulation of Ising spin systems , 1975 .

[26]  Tang,et al.  Self-Organized Criticality: An Explanation of 1/f Noise , 2011 .

[27]  Stefan Boettcher,et al.  Jamming Model for the Extremal Optimization Heuristic , 2001, ArXiv.

[28]  O. C. Martin,et al.  RENORMALIZATION FOR DISCRETE OPTIMIZATION , 1999 .

[29]  F. Glover,et al.  In Modern Heuristic Techniques for Combinatorial Problems , 1993 .

[30]  Joseph C. Culberson,et al.  Frozen development in graph coloring , 2001, Theor. Comput. Sci..

[31]  Mark Jerrum,et al.  The Markov chain Monte Carlo method: an approach to approximate counting and integration , 1996 .

[32]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[33]  Alexander K. Hartmann,et al.  Evidence for existence of many pure ground states in 3d $\pm J$ Spin Glasses , 1997 .

[34]  Rémi Monasson,et al.  Determining computational complexity from characteristic ‘phase transitions’ , 1999, Nature.

[35]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[36]  Bruce Hendrickson,et al.  A Multi-Level Algorithm For Partitioning Graphs , 1995, Proceedings of the IEEE/ACM SC95 Conference.

[37]  Alexander K. Hartmann,et al.  Evidence for nontrivial ground-state structure of 3d ? J spin glasses , 1997 .

[38]  Giorgio Gambosi,et al.  Complexity and Approximation , 1999, Springer Berlin Heidelberg.

[39]  Feller William,et al.  An Introduction To Probability Theory And Its Applications , 1950 .

[40]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[41]  Bernd Freisleben,et al.  Memetic Algorithms and the Fitness Landscape of the Graph Bi-Partitioning Problem , 1998, PPSN.

[42]  Yves Crama,et al.  Local Search in Combinatorial Optimization , 2018, Artificial Neural Networks.

[43]  Dorit S. Hochbaum,et al.  Approximation Algorithms for NP-Hard Problems , 1996 .

[44]  Kenneth J. Supowit,et al.  Simulated Annealing Without Rejected Moves , 1986, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[45]  Ingo Wegener,et al.  Theoretical Aspects of Evolutionary Algorithms , 2001, ICALP.

[46]  P. A. P. Moran,et al.  An introduction to probability theory , 1968 .

[47]  S Kirkpatrick,et al.  Critical Behavior in the Satisfiability of Random Boolean Expressions , 1994, Science.

[48]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[49]  Stephen A. Cook,et al.  The complexity of theorem-proving procedures , 1971, STOC.

[50]  S. Gould,et al.  Punctuated equilibria: the tempo and mode of evolution reconsidered , 1977, Paleobiology.

[51]  Emile H. L. Aarts,et al.  Simulated Annealing: Theory and Applications , 1987, Mathematics and Its Applications.

[52]  R. Palmer,et al.  Models of hierarchically constrained dynamics for glassy relaxation , 1984 .

[53]  S. Boettcher Extremal Optimization of Graph Partitioning at the Percolation Threshold , 1999, cond-mat/9901353.

[54]  Fred W. Glover,et al.  Future paths for integer programming and links to artificial intelligence , 1986, Comput. Oper. Res..