Tutorial review H∞ optimal controller design for a class of distributed parameter systems

This paper is a tutorial on a frequency domain design method for the two-block H∞ optimal control of a class of SISO distributed parameter systems. Uncertainties in the system are assumed to be unmodelled dynamics represented in the form of either multiplicative, or additive, or coprime factor perturbations of a nominal infinite-dimensional plant. Performance of the closed loop system is measured in terms of the energy amplification from external input signals to the outputs of interest. In this paper transfer functions of the nominal plant and the weights are used in order to derive a solution to two-block H∞ control problems. The solution presented here uses results from operator theory. The H∞ optimal performance and controller in this method are computed from a finite set of linear equations.

[1]  Malcolm C. Smith Singular values and vectors of a class of Hankel operators , 1989 .

[2]  Hong Yang,et al.  H/sup infinity /-optimal mixed sensitivity for general distributed plants , 1990, 29th IEEE Conference on Decision and Control.

[3]  Ruth F. Curtain,et al.  Robust control of flexible structures A case study , 1988, Autom..

[4]  N. Nikol’skiĭ,et al.  Treatise on the Shift Operator , 1986 .

[5]  Allen Tannenbaum,et al.  Abstract model and controller design for an unstable aircraft , 1992 .

[6]  G. Stein,et al.  Multivariable feedback design: Concepts for a classical/modern synthesis , 1981 .

[7]  C. Desoer,et al.  An algebra of transfer functions for distributed linear time-invariant systems , 1978 .

[8]  T. Basar,et al.  A dynamic games approach to controller design: disturbance rejection in discrete time , 1989, Proceedings of the 28th IEEE Conference on Decision and Control,.

[9]  Ruth F. Curtain,et al.  H/sub infinity /-control for distributed parameter systems: a survey , 1990, 29th IEEE Conference on Decision and Control.

[10]  J. Helton,et al.  Broadbanding:Gain equalization directly from data , 1981 .

[11]  H. Özbay A simpler formula for the singular values of a certain Hankel operator , 1991 .

[12]  K. Glover,et al.  State-space formulae for all stabilizing controllers that satisfy and H ∞ norm bound and relations to risk sensitivity , 1988 .

[13]  Y. Yamamoto Correspondence of Internal and External Stability — Realization, Transfer Functions and Complex Analysis , 1990 .

[14]  Sanjoy K. Mitter,et al.  A note on essential spectra and norms of mixed Hankel-Toeplitz operators , 1988 .

[15]  Charles A. Desoer,et al.  Necessary and sufficient condition for robust stability of linear distributed feedback systems , 1982 .

[16]  K. Srinivasan,et al.  Analysis and Design of Repetitive Control Systems using the Regeneration Spectrum , 1990, 1990 American Control Conference.

[17]  Allen R. Tannenbaum,et al.  Frequency domain analysis and robust control design for an ideal flexible beam , 1991, Autom..

[18]  Munther A. Dahleh,et al.  Weighted ?Im Optimization for Stable Infinite Dimensional Systems using Finite Dimensional Techniques * , 1990 .

[19]  Bruce A. Francis,et al.  Feedback Control Theory , 1992 .

[20]  T. Georgiou,et al.  Optimal robustness in the gap metric , 1990 .

[21]  A. V. Balakrishnan,et al.  Active control of airfoils in unsteady aerodynamics , 1977 .

[22]  C. Foias,et al.  The commutant lifting approach to interpolation problems , 1990 .

[23]  H. Kwakernaak Minimax frequency domain performance and robustness optimization of linear feedback systems , 1985 .

[24]  P. Khargonekar,et al.  State-space solutions to standard H/sub 2/ and H/sub infinity / control problems , 1989 .

[25]  Dante C. Youla,et al.  Modern Wiener-Hopf Design of Optimal Controllers. Part I , 1976 .

[26]  Suresh M. Joshi,et al.  Control of Large Flexible Space Structures , 1989 .

[27]  Hari Bercovici,et al.  On skew Toeplitz operations, I , 1987 .

[28]  A. Tannenbaum,et al.  On the four block problem, II: The singular system , 1988 .

[29]  M. Vajta New model reduction technique for a class of parabolic partial differential equations (temperature distribution) , 1991, IEEE 1991 International Conference on Systems Engineering.

[30]  A. Tannenbaum,et al.  Weighted sensitivity minimization: General plants in H∞ and rational weights , 1988, 26th IEEE Conference on Decision and Control.

[31]  P. Khargonekar,et al.  Approximation of infinite-dimensional systems , 1989 .

[32]  B. Francis,et al.  A Course in H Control Theory , 1987 .

[33]  S. Power Hankel Operators on Hilbert Space , 1980 .

[34]  Allen Tannenbaum,et al.  Some Explicit Formulae for the Singular Values of Certain Hankel Operators with Factorizable Symbol , 1988 .

[35]  G. Zames Feedback and optimal sensitivity: Model reference transformations, multiplicative seminorms, and approximate inverses , 1981 .

[36]  Pramod P. Khargonekar,et al.  Four-block problem: stable plants and rational weights , 1989 .

[37]  P. Khargonekar,et al.  On the weighted sensitivity minimization problem for delay systems , 1987 .

[38]  H. Ozbay,et al.  Robust control of an aeroelastic system modeled by a singular integrodifferential equation , 1991, [1991] Proceedings of the 30th IEEE Conference on Decision and Control.

[39]  Mathukumalli Vidyasagar,et al.  Robust controllers for uncertain linear multivariable systems , 1984, Autom..

[40]  Malcolm C. Smith,et al.  On the optimal two block H∞ compensators for distributed unstable plants , 1992, 1992 American Control Conference.

[41]  Allen Tannenbaum,et al.  A skew Toeplitz approach to the H ∞ optimal control of multivariable distributed systems , 1990 .

[42]  Z. Nehari On Bounded Bilinear Forms , 1957 .

[43]  D. Sarason Generalized interpolation in , 1967 .

[44]  J. Ball,et al.  Sensitivity minimization in an H ∞ norm: parametrization of all suboptimal solutions , 1987 .

[45]  Edmond A. Jonckheere,et al.  L∞-compensation with mixed sensitivity as a broadband matching problem , 1984 .

[46]  M. A. Dahleh,et al.  Weighted H/sup infinity / optimization for stable infinite dimensional systems using finite dimensional techniques , 1990, 29th IEEE Conference on Decision and Control.