An auxiliary model based least squares algorithm for a dual-rate state space system with time-delay using the data filtering

Abstract For dual-rate state space systems with time-delay, this paper combines the auxiliary model identification idea with the filtering technique, transforms the state space model into the identification model with different input and output sampling rates, and presents a filtering and auxiliary model based recursive least squares identification algorithm with finite measurement input–output data. Compared with the auxiliary model based recursive least squares algorithm, the proposed algorithm can generate more accurate parameter estimates and has a higher computational efficiency because the dimensions of its covariance matrices become small.

[1]  F. Ding Coupled-least-squares identification for multivariable systems , 2013 .

[2]  Håkan Hjalmarsson,et al.  Identification for control of multivariable systems: Controller validation and experiment design via LMIs , 2008, Autom..

[3]  Ahmet íStüNtüRk,et al.  Output feedback stabilization of nonlinear dual-rate sampled-data systems via an approximate discrete-time model , 2012 .

[4]  Feng Ding,et al.  Auxiliary Model-based Stochastic Gradient Algorithm for Multivariable Output Error Systems , 2010 .

[5]  Huiping Li,et al.  Robust H∞ filtering for nonlinear stochastic systems with uncertainties and Markov delays , 2012, Autom..

[6]  Feng Ding,et al.  Hierarchical gradient parameter estimation algorithm for Hammerstein nonlinear systems using the key term separation principle , 2014, Appl. Math. Comput..

[7]  Anatoli Torokhti,et al.  Filtering of infinite sets of stochastic signals: An approach based on interpolation techniques , 2011, Signal Process..

[8]  MercèreGuillaume,et al.  Parameterization and identification of multivariable state-space systems , 2011 .

[9]  J. R. Layne,et al.  Iterative robust filtering for ground target tracking , 2007 .

[10]  Peter Csaba Ölveczky,et al.  Formal patterns for multirate distributed real-time systems , 2014, Sci. Comput. Program..

[11]  Jie Ding,et al.  Auxiliary model based parameter estimation for dual-rate output error systems with colored noise ☆ , 2013 .

[12]  Rik Pintelon,et al.  Brief paper: Box-Jenkins identification revisited-Part III , 2007 .

[13]  Jing Chen,et al.  Several gradient parameter estimation algorithms for dual-rate sampled systems , 2014, J. Frankl. Inst..

[14]  Alexander S. Rodin,et al.  The Mathematical Modelling of Liner Movement in a Magnetic Compressor: Elastic, Liquid and Plastic Liner Models Comparison , 2012 .

[15]  Stephen L. Campbell,et al.  Auxiliary signal design for rapid multi-model identification using optimization , 2002, Autom..

[16]  Baolin Liu,et al.  A multi-innovation generalized extended stochastic gradient algorithm for output nonlinear autoregressive moving average systems , 2014, Appl. Math. Comput..

[17]  Feng Ding,et al.  Recursive least squares parameter identification algorithms for systems with colored noise using the filtering technique and the auxilary model , 2015, Digit. Signal Process..

[18]  BarenthinMäRta,et al.  Identification for control of multivariable systems , 2008 .

[19]  Huijun Gao,et al.  Multiple model approach to linear parameter varying time-delay system identification with EM algorithm , 2014, J. Frankl. Inst..

[20]  Rik Pintelon,et al.  Box-Jenkins identification revisited - Part III: Multivariable systems , 2007, Autom..

[21]  Vojislav Z. Filipovic,et al.  Consistency of the robust recursive Hammerstein model identification algorithm , 2015, J. Frankl. Inst..

[22]  Graham C. Goodwin,et al.  Adaptive filtering prediction and control , 1984 .

[23]  Yanjun Liu,et al.  Multi-innovation stochastic gradient algorithm for multiple-input single-output systems using the auxiliary model , 2009, Appl. Math. Comput..

[24]  Ling Xu,et al.  Parameter estimation and controller design for dynamic systems from the step responses based on the Newton iteration , 2015 .

[25]  Feng Ding,et al.  Recursive Least Squares Parameter Estimation for a Class of Output Nonlinear Systems Based on the Model Decomposition , 2016, Circuits Syst. Signal Process..

[26]  Feng Ding,et al.  Parameter estimation of dual-rate stochastic systems by using an output error method , 2005, IEEE Trans. Autom. Control..

[27]  Chien-Shu Hsieh State estimation for descriptor systems via the unknown input filtering method , 2013, Autom..

[28]  Feng Ding,et al.  Least squares estimation for a class of non-uniformly sampled systems based on the hierarchical identification principle , 2012, Circuits Syst. Signal Process..

[29]  Fredric J. Harris,et al.  Multirate Signal Processing for Communication Systems , 2004 .

[30]  Feng Ding,et al.  Auxiliary Model-based Stochastic Gradient Algorithm for Multivariable Output Error Systems: Auxiliary Model-based Stochastic Gradient Algorithm for Multivariable Output Error Systems , 2010 .

[31]  Ho-Chan Kim,et al.  Parameter identification and design of a robust attitude controller using H∞ methodology for the raptor E620 small-scale helicopter , 2012 .

[32]  Maryam Dehghani,et al.  Identification of multivariable nonlinear systems in the presence of colored noises using iterative hierarchical least squares algorithm. , 2014, ISA transactions.

[33]  Jie Ding,et al.  Modified Subspace Identification for Periodically Non-uniformly Sampled Systems by Using the Lifting Technique , 2013, Circuits, Systems, and Signal Processing.

[34]  Ling Xu,et al.  A proportional differential control method for a time-delay system using the Taylor expansion approximation , 2014, Appl. Math. Comput..

[35]  Laurent Bako,et al.  Parameterization and identification of multivariable state-space systems: A canonical approach , 2011, Autom..

[36]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[37]  Feng Ding,et al.  State filtering and parameter estimation for linear systems with d-step state-delay , 2014, IET Signal Process..

[38]  Feng Ding,et al.  Highly Efficient Identification Methods for Dual-Rate Hammerstein Systems , 2015, IEEE Transactions on Control Systems Technology.

[39]  Moon G. Joo,et al.  Multi-object identification for mobile robot using ultrasonic sensors , 2012 .

[40]  Ling Xu,et al.  Application of the Newton iteration algorithm to the parameter estimation for dynamical systems , 2015, J. Comput. Appl. Math..

[41]  Feng Ding,et al.  Iterative estimation for a non-linear IIR filter with moving average noise by means of the data filtering technique , 2017, IMA J. Math. Control. Inf..

[42]  Ahmet H. Kayran,et al.  Maximum Entropy Power Spectrum Estimation for 2-D Multirate Systems , 2012, Circuits Syst. Signal Process..

[43]  Prabhakar R. Pagilla,et al.  Input-state model matching and ripple-free response for dual-rate systems , 2011, Syst. Control. Lett..