Real-Time Trajectory Generation for Quadrocopters

This paper presents a trajectory generation algorithm that efficiently computes high-performance flight trajectories that are capable of moving a quadrocopter from a large class of initial states to a given target point that will be reached at rest. The approach consists of planning separate trajectories in each of the three translational degrees of freedom, and ensuring feasibility by deriving decoupled constraints for each degree of freedom through approximations that preserve feasibility. The presented algorithm can compute a feasible trajectory within tens of microseconds on a laptop computer; remaining computation time can be used to iteratively improve the trajectory. By replanning the trajectory at a high rate, the trajectory generator can be used as an implicit feedback law similar to model predictive control. The solutions generated by the algorithm are analyzed by comparing them with time-optimal motions, and experimental results validate the approach.

[1]  Rodney A. Brooks Autonomous mobile robots , 1990 .

[2]  Vijay Kumar,et al.  Analysis and Synthesis of Multi-Rotor Aerial Vehicles , 2011 .

[3]  Jay H. Lee,et al.  Model predictive control: past, present and future , 1999 .

[4]  Raffaello D'Andrea,et al.  Theory and implementation of path planning by negotiation for decentralized agents , 2008, Robotics Auton. Syst..

[5]  Claire J. Tomlin,et al.  Learning-based model predictive control on a quadrotor: Onboard implementation and experimental results , 2012, 2012 IEEE International Conference on Robotics and Automation.

[6]  Raffaello D'Andrea,et al.  Quadrocopter Trajectory Generation and Control , 2011 .

[7]  Emilio Frazzoli,et al.  Sampling-based algorithms for optimal motion planning , 2011, Int. J. Robotics Res..

[8]  Raffaello D'Andrea,et al.  A computationally efficient algorithm for state-to-state quadrocopter trajectory generation and feasibility verification , 2013, 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[9]  J. Douglas Faires,et al.  Numerical Analysis , 1981 .

[10]  B. Bethke,et al.  Real-time indoor autonomous vehicle test environment , 2008, IEEE Control Systems.

[11]  Gerd Hirzinger,et al.  Energy-efficient Autonomous Four-rotor Flying Robot Controlled at 1 kHz , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[12]  Charles Richter,et al.  Polynomial Trajectory Planning for Aggressive Quadrotor Flight in Dense Indoor Environments , 2016, ISRR.

[13]  Raffaello D'Andrea,et al.  Trajectory generation and control for four wheeled omnidirectional vehicles , 2006, Robotics Auton. Syst..

[14]  Alonzo Kelly,et al.  Reactive Nonholonomic Trajectory Generation via Parametric Optimal Control , 2003, Int. J. Robotics Res..

[15]  Suresh P. Sethi,et al.  A Survey of the Maximum Principles for Optimal Control Problems with State Constraints , 1995, SIAM Rev..

[16]  Vijay Kumar,et al.  Minimum snap trajectory generation and control for quadrotors , 2011, 2011 IEEE International Conference on Robotics and Automation.

[17]  Sergei Lupashin,et al.  The Flight Assembled Architecture installation: Cooperative construction with flying machines , 2014, IEEE Control Systems.

[18]  Raffaello D'Andrea,et al.  Performance benchmarking of quadrotor systems using time-optimal control , 2012, Auton. Robots.

[19]  James F. Whidborne,et al.  A prototype of an autonomous controller for a quadrotor UAV , 2007, 2007 European Control Conference (ECC).

[20]  Y. Bouktir,et al.  Trajectory planning for a quadrotor helicopter , 2008, 2008 16th Mediterranean Conference on Control and Automation.

[21]  Mark B. Milam,et al.  A new computational approach to real-time trajectory generation for constrained mechanical systems , 2000, Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187).

[22]  J. Meditch,et al.  Applied optimal control , 1972, IEEE Transactions on Automatic Control.

[23]  Sergei Lupashin,et al.  A platform for aerial robotics research and demonstration: The Flying Machine Arena , 2014 .

[24]  Marc Pollefeys,et al.  PIXHAWK: A micro aerial vehicle design for autonomous flight using onboard computer vision , 2012, Auton. Robots.

[25]  Steven Lake Waslander,et al.  Aerodynamics and control of autonomous quadrotor helicopters in aggressive maneuvering , 2009, 2009 IEEE International Conference on Robotics and Automation.

[26]  Thomas F. Edgar,et al.  An improved method for nonlinear model reduction using balancing of empirical gramians , 2002 .

[27]  Vijay Kumar,et al.  Influence of Aerodynamics and Proximity Effects in Quadrotor Flight , 2012, ISER.

[28]  Vijay Kumar,et al.  The GRASP Multiple Micro-UAV Testbed , 2010, IEEE Robotics & Automation Magazine.

[29]  Claire J. Tomlin,et al.  Quadrotor Helicopter Trajectory Tracking Control , 2008 .

[30]  Friedrich M. Wahl,et al.  Online Trajectory Generation: Basic Concepts for Instantaneous Reactions to Unforeseen Events , 2010, IEEE Transactions on Robotics.

[31]  Goele Pipeleers,et al.  Time-optimal quadrotor flight , 2013, 2013 European Control Conference (ECC).

[32]  H. Hermes,et al.  On The Nonlinear Control Problem with Control Appearing Linearly , 1963 .

[33]  Philip E. Gill,et al.  Practical optimization , 1981 .

[34]  J. Miller Numerical Analysis , 1966, Nature.

[35]  Corrado Guarino Lo Bianco,et al.  Third Order System for the Generation of Minimum-Time Trajectories with Asymmetric Bounds on Velocity , Acceleration , and Jerk , 2012 .

[36]  Manfred Morari,et al.  Model predictive control: Theory and practice - A survey , 1989, Autom..

[37]  Robert Mahony,et al.  Nonlinear Dynamic Modeling for High Performance Control of a Quadrotor , 2012, ICRA 2012.

[38]  Dimitri P. Bertsekas,et al.  Dynamic Programming and Optimal Control, Two Volume Set , 1995 .

[39]  Raffaello D'Andrea,et al.  A model predictive controller for quadrocopter state interception , 2013, 2013 European Control Conference (ECC).

[40]  Robert Mahony,et al.  Modelling and control of a quad-rotor robot , 2006 .