First principles study of two-dimensional high-temperature antiferromagnetic semiconductor MoICl2 under strain effect

Two-dimensional antiferromagnetic materials with room-temperature magnetism are ideal materials for antiferromagnetic spintronic devices. In this paper, antiferromagnetic monolayer MoICl2 based on first-principles calculations is reported. We predict that monolayer MoICl2 is an antiferromagnetic semiconductor with an indirect bandgap. In the study of strain-induced effects on the system, the electronic structure, bandgap, and magnetic anisotropy energy of monolayer MoICl2 undergo significant changes. However, its magnetic ground state remains unaffected and continues to exhibit antiferromagnetic behavior. Particularly, we predict that the Néel temperature (TN) of monolayer MoICl2 is 53 K and that TN can be further increased to 380 K at a biaxial compressive strain of 6%. The results indicate that monolayer MoICl2 can serve as a potential candidate material for spintronics applications.

[1]  Yanfeng Ge,et al.  Two-dimensional antiferromagnetic semiconductor T’-MoTeI from first principles , 2021, Journal of physics. Condensed matter : an Institute of Physics journal.

[2]  Yaozhuang Nie,et al.  Strain modulation of magnetic properties of monolayer and bilayer FePS3 antiferromagnet , 2021 .

[3]  Zhongqin Yang,et al.  Bipolar ferromagnetic semiconductors and doping-tuned room-temperature half-metallicity in monolayer MoX3 (X=Cl, Br, I) : An HSE06 study , 2021 .

[4]  Kyung Hwan Choi,et al.  Low ligand field strength ion (I−) mediated 1D inorganic material MoI3: Synthesis and application to photo-detectors , 2021 .

[5]  Xinsheng Wang,et al.  Vapor Deposition of Magnetic Van der Waals NiI2 Crystals. , 2020, ACS nano.

[6]  B. Xiang,et al.  Exploring the magnetic ordering in atomically thin antiferromagnetic MnPSe3 by Raman spectroscopy , 2020 .

[7]  Austin M. Ferrenti,et al.  Change in Magnetic Properties upon Chemical Exfoliation of FeOCl. , 2019, Inorganic chemistry.

[8]  S. Pennycook,et al.  Phase-controllable growth of ultrathin 2D magnetic FeTe crystals , 2019, Nature Communications.

[9]  B. Gil,et al.  Photonics with hexagonal boron nitride , 2019, Nature Reviews Materials.

[10]  Y. Chauhan,et al.  Intrinsic magnetism in monolayer transition metal trihalides: A comparative study , 2019, Journal of Magnetism and Magnetic Materials.

[11]  Joshua E. Goldberger,et al.  Pressure-controlled interlayer magnetism in atomically thin CrI3 , 2019, Nature Materials.

[12]  Xiaodong Xu,et al.  Atomically Thin CrCl3: An In-Plane Layered Antiferromagnetic Insulator. , 2019, Nano letters.

[13]  Efthimios Kaxiras,et al.  Author Correction: Enhancement of interlayer exchange in an ultrathin two-dimensional magnet , 2019, Nature Physics.

[14]  Cheol-Hwan Park,et al.  Suppression of magnetic ordering in XXZ-type antiferromagnetic monolayer NiPS3 , 2019, Nature Communications.

[15]  Guo Wang,et al.  Theoretical prediction of two-dimensional CrOF sheet as a ferromagnetic semiconductor or a half-metal , 2018, Chemical Physics.

[16]  Yuanbo Zhang,et al.  Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2 , 2018, Nature.

[17]  Takashi Taniguchi,et al.  Unconventional superconductivity in magic-angle graphene superlattices , 2018, Nature.

[18]  Jie Shan,et al.  Controlling magnetism in 2D CrI3 by electrostatic doping , 2018, Nature Nanotechnology.

[19]  Michael A. McGuire,et al.  Electrical control of 2D magnetism in bilayer CrI3 , 2018, Nature Nanotechnology.

[20]  Hui Liu,et al.  Electronic structures and band alignments of monolayer metal trihalide semiconductors MX3 , 2017 .

[21]  Zuhuang Chen,et al.  A Strain-Driven Antiferroelectric-to-Ferroelectric Phase Transition in La-Doped BiFeO3 Thin Films on Si. , 2017, Nano letters.

[22]  A. Kis,et al.  2D transition metal dichalcogenides , 2017 .

[23]  Jr.,et al.  Magnetic Behavior and Spin-Lattice Coupling in Cleavable, van der Waals Layered CrCl3 Crystals , 2017, 1706.01796.

[24]  D. Muller,et al.  Janus monolayers of transition metal dichalcogenides. , 2017, Nature nanotechnology.

[25]  A. Arnau,et al.  Highly-ordered wide bandgap materials for quantized anomalous Hall and magnetoelectric effects , 2017, 1810.00235.

[26]  Michael A. McGuire,et al.  Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit , 2017, Nature.

[27]  S. Louie,et al.  Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals , 2017, Nature.

[28]  J. Ryoo,et al.  Ising-Type Magnetic Ordering in Atomically Thin FePS3. , 2016, Nano letters.

[29]  W. Duan,et al.  Discovery of robust in-plane ferroelectricity in atomic-thick SnTe , 2016, Science.

[30]  Dipanshu Bansal,et al.  Orbitally driven giant phonon anharmonicity in SnSe , 2015, Nature Physics.

[31]  Xiaodong Xu,et al.  Electronic structures and theoretical modelling of two-dimensional group-VIB transition metal dichalcogenides. , 2015, Chemical Society reviews.

[32]  Kristin A. Persson,et al.  Commentary: The Materials Project: A materials genome approach to accelerating materials innovation , 2013 .

[33]  Andres Castellanos-Gomez,et al.  Elastic Properties of Freely Suspended MoS2 Nanosheets , 2012, Advanced materials.

[34]  Anubhav Jain,et al.  Formation enthalpies by mixing GGA and GGA + U calculations , 2011 .

[35]  Kenjiro Miyano,et al.  Ultrafast magnetization dynamics of antiferromagnetic compounds , 2008 .

[36]  J. Kysar,et al.  Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene , 2008, Science.

[37]  Xiaojuan Liu,et al.  Crystal structures and elastic properties of superhard IrN2 and IrN3 from first principles , 2007 .

[38]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[39]  Stefano de Gironcoli,et al.  Linear response approach to the calculation of the effective interaction parameters in the LDA + U method , 2004, cond-mat/0405160.

[40]  G. Scuseria,et al.  Hybrid functionals based on a screened Coulomb potential , 2003 .

[41]  C. Humphreys,et al.  Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study , 1998 .

[42]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[43]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[44]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[45]  S. Nosé A unified formulation of the constant temperature molecular dynamics methods , 1984 .

[46]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[47]  N. Mermin,et al.  Absence of Ferromagnetism or Antiferromagnetism in One- or Two-Dimensional Isotropic Heisenberg Models , 1966 .

[48]  J. Kanamori Crystal Distortion in Magnetic Compounds , 1960 .

[49]  Philip W. Anderson,et al.  New Approach to the Theory of Superexchange Interactions , 1959 .

[50]  W. Meiklejohn,et al.  New Magnetic Anisotropy , 1956 .

[51]  John B. Goodenough,et al.  Theory of the role of covalence in the perovskite-type manganites [La,M(II)]MnO3 , 1955 .