暂无分享,去创建一个
Kristoffer Arnsfelt Hansen | Alexandros Hollender | Aris Filos-Ratsikas | Kasper Hogh | Aris Filos-Ratsikas | Alexandros Hollender | Kasper Høgh
[1] Kristoffer Arnsfelt Hansen,et al. Computational Complexity of Proper Equilibrium , 2018, EC.
[2] Kristoffer Arnsfelt Hansen,et al. Exact Algorithms for Solving Stochastic Games , 2012, ArXiv.
[3] Kristoffer Arnsfelt Hansen,et al. Strong Approximate Consensus Halving and the Borsuk-Ulam Theorem , 2021, ICALP.
[4] H. Steinhaus,et al. Sur la division pragmatique , 1949 .
[5] M. Pycia,et al. A Pseudo-Market Approach to Allocation with Priorities , 2018, American Economic Journal: Microeconomics.
[6] Vijay V. Vazirani,et al. An Auction-Based Market Equilibrium Algorithm for the Separable Gross Substitutability Case , 2004, APPROX-RANDOM.
[7] Sylvain Sorin,et al. Stochastic Games and Applications , 2003 .
[8] K. Arrow,et al. EXISTENCE OF AN EQUILIBRIUM FOR A COMPETITIVE ECONOMY , 1954 .
[9] Alexandros Hollender,et al. On the Complexity of Equilibrium Computation in First-Price Auctions , 2021, EC.
[10] Marie-Françoise Roy,et al. Real algebraic geometry , 1992 .
[11] Ruta Mehta,et al. Dichotomies in Equilibrium Computation and Membership of PLC Markets in FIXP , 2016, Theory Comput..
[12] Paul W. Goldberg,et al. The complexity of computing a Nash equilibrium , 2006, STOC '06.
[13] Ariel D. Procaccia,et al. Cake cutting: not just child's play , 2013, CACM.
[14] Haris Aziz,et al. A Discrete and Bounded Envy-Free Cake Cutting Protocol for Any Number of Agents , 2016, 2016 IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS).
[15] Ruta Mehta,et al. Settling the complexity of Leontief and PLC exchange markets under exact and approximate equilibria , 2017, STOC.
[16] L. Brouwer. Über Abbildung von Mannigfaltigkeiten , 1911 .
[17] R. Selten. Reexamination of the perfectness concept for equilibrium points in extensive games , 1975, Classics in Game Theory.
[18] Kurt Mehlhorn,et al. An Improved Combinatorial Polynomial Algorithm for the Linear Arrow-Debreu Market , 2015, SODA.
[19] Kurt Mehlhorn,et al. A combinatorial polynomial algorithm for the linear Arrow-Debreu market , 2012, Inf. Comput..
[20] D. Foley. Resource allocation and the public sector , 1967 .
[21] Paul W. Goldberg,et al. A Survey of PPAD-Completeness for Computing Nash Equilibria , 2011, ArXiv.
[22] Kousha Etessami,et al. On the Complexity of Nash Equilibria and Other Fixed Points , 2010, SIAM J. Comput..
[23] L. McKenzie,et al. On Equilibrium in Graham's Model of World Trade and Other Competitive Systems , 1954 .
[24] Paul G. Spirakis,et al. Computing Approximate Nash Equilibria in Polymatrix Games , 2015, Algorithmica.
[25] A. Mas-Colell,et al. Microeconomic Theory , 1995 .
[26] Steven J. Brams,et al. Fair division - from cake-cutting to dispute resolution , 1998 .
[27] K. Schittkowski,et al. NONLINEAR PROGRAMMING , 2022 .
[28] Amin Saberi,et al. Approximating Market Equilibria , 2003, RANDOM-APPROX.
[29] Miquel Oliu-Barton,et al. New Algorithms for Solving Zero-Sum Stochastic Games , 2020, Math. Oper. Res..
[30] Herbert E. Scarf,et al. The Approximation of Fixed Points of a Continuous Mapping , 1967 .
[31] Amin Saberi,et al. Leontief economies encode nonzero sum two-player games , 2006, SODA '06.
[32] R. Zeckhauser,et al. The Efficient Allocation of Individuals to Positions , 1979, Journal of Political Economy.
[33] Hervé Moulin,et al. A New Solution to the Random Assignment Problem , 2001, J. Econ. Theory.
[34] Mihalis Yannakakis,et al. Equilibria, Fixed Points, and Complexity Classes , 2008, STACS.
[35] Atila Abdulkadiroglu,et al. RANDOM SERIAL DICTATORSHIP AND THE CORE FROM RANDOM ENDOWMENTS IN HOUSE ALLOCATION PROBLEMS , 1998 .
[36] L. Shapley,et al. Stochastic Games* , 1953, Proceedings of the National Academy of Sciences.
[37] J. Neumann. Zur Theorie der Gesellschaftsspiele , 1928 .
[38] F. Su. Rental Harmony: Sperner's Lemma in Fair Division , 1999 .
[39] D. Gale. Equilibrium in a discrete exchange economy with money , 1984 .
[40] W. Karush. Minima of Functions of Several Variables with Inequalities as Side Conditions , 2014 .
[41] 丸山 徹. Convex Analysisの二,三の進展について , 1977 .
[42] J. Nash. Equilibrium Points in N-Person Games. , 1950, Proceedings of the National Academy of Sciences of the United States of America.
[43] H. Poincaré,et al. Sur les courbes définies par les équations différentielles(III) , 1885 .
[44] Xiaotie Deng,et al. Settling the complexity of computing two-player Nash equilibria , 2007, JACM.
[45] I. Glicksberg. A FURTHER GENERALIZATION OF THE KAKUTANI FIXED POINT THEOREM, WITH APPLICATION TO NASH EQUILIBRIUM POINTS , 1952 .
[46] Paul W. Goldberg,et al. The Hairy Ball Problem is PPAD-Complete , 2019, ICALP.
[47] C. Berge. Topological Spaces: including a treatment of multi-valued functions , 2010 .
[48] Jack M. Robertson,et al. Cake-cutting algorithms - be fair if you can , 1998 .
[49] Douglas R. Woodall,et al. Dividing a cake fairly , 1980 .
[50] E. Damme. Refinements of the Nash Equilibrium Concept , 1983 .
[51] Kristoffer Arnsfelt Hansen,et al. The Computational Complexity of Trembling Hand Perfection and Other Equilibrium Refinements , 2010, SAGT.
[52] M. Slater. Lagrange Multipliers Revisited , 2014 .
[53] E. Sperner. Neuer beweis für die invarianz der dimensionszahl und des gebietes , 1928 .
[54] W. Stromquist. How to Cut a Cake Fairly , 1980 .
[55] Karol Borsuk. Drei Sätze über die n-dimensionale euklidische Sphäre , 1933 .
[56] Kousha Etessami,et al. The complexity of computing a (quasi-)perfect equilibrium for an n-player extensive form game , 2021, Games Econ. Behav..
[57] László A. Végh,et al. A strongly polynomial algorithm for linear exchange markets , 2018, STOC.
[58] Ariel D. Procaccia. Thou Shalt Covet Thy Neighbor's Cake , 2009, IJCAI.
[59] Paul G. Spirakis,et al. Computing Exact Solutions of Consensus Halving and the Borsuk-Ulam Theorem , 2019, ICALP.
[60] O. Mangasarian,et al. The Fritz John Necessary Optimality Conditions in the Presence of Equality and Inequality Constraints , 1967 .
[61] A. M. Fink,et al. Equilibrium in a stochastic $n$-person game , 1964 .
[62] S. Kakutani. A generalization of Brouwer’s fixed point theorem , 1941 .
[63] Bronisław Knaster,et al. Ein Beweis des Fixpunktsatzes für n-dimensionale Simplexe , 1929 .
[64] H. Varian. Equity, Envy and Efficiency , 1974 .
[65] J. Geanakoplos. Nash and Walras equilibrium via Brouwer , 2003 .
[66] John Fearnley,et al. Inapproximability Results for Approximate Nash Equilibria , 2016, WINE.
[67] Christos H. Papadimitriou,et al. On the Complexity of the Parity Argument and Other Inefficient Proofs of Existence , 1994, J. Comput. Syst. Sci..
[68] K. Fan. Fixed-point and Minimax Theorems in Locally Convex Topological Linear Spaces. , 1952, Proceedings of the National Academy of Sciences of the United States of America.
[69] F. Echenique,et al. Constrained Pseudo-Market Equilibrium , 2019, American Economic Review.
[70] F. John. Extremum Problems with Inequalities as Subsidiary Conditions , 2014 .
[71] Kristoffer Arnsfelt Hansen,et al. The Complexity of Approximating a Trembling Hand Perfect Equilibrium of a Multi-player Game in Strategic Form , 2014, SAGT.
[72] Vijay V. Vazirani,et al. On Computability of Equilibria in Markets with Production , 2013, SODA.
[73] Mihalis Yannakakis,et al. Computational Complexity of the Hylland-Zeckhauser Scheme for One-Sided Matching Markets , 2020, ITCS.
[74] Nikhil R. Devanur,et al. Market equilibrium via a primal--dual algorithm for a convex program , 2008, JACM.
[75] Kamal Jain,et al. A polynomial time algorithm for computing an Arrow-Debreu market equilibrium for linear utilities , 2004, 45th Annual IEEE Symposium on Foundations of Computer Science.
[76] P. Hall. On Representatives of Subsets , 1935 .
[77] Aviad Rubinstein,et al. Settling the Complexity of Computing Approximate Two-Player Nash Equilibria , 2016, 2016 IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS).
[78] Eric van Damme,et al. Non-Cooperative Games , 2000 .
[79] Gerhard J. Woeginger,et al. On the complexity of cake cutting , 2007, Discret. Optim..
[80] E. Rowland. Theory of Games and Economic Behavior , 1946, Nature.
[81] D. Gale. The law of supply and demand , 1955 .
[82] Xiaotie Deng,et al. Algorithmic Solutions for Envy-Free Cake Cutting , 2012, Oper. Res..
[83] R. B. Bapat,et al. A constructive proof of a permutation-based generalization of Sperner's lemma , 1989, Math. Program..
[84] Gerard Debreu,et al. A Social Equilibrium Existence Theorem* , 1952, Proceedings of the National Academy of Sciences.
[85] Amin Saberi,et al. The complexity of equilibria: Hardness results for economies via a correspondence with games , 2008, Theor. Comput. Sci..
[86] Nikhil R. Devanur,et al. An Improved Approximation Scheme for Computing Arrow-Debreu Prices for the Linear Case , 2003, FSTTCS.
[87] Mihalis Yannakakis,et al. DATE AND TIME ! ! ! A Complementary Pivot Algorithm for Market Equilibrium under Separable , Piecewise-Linear Concave Utilities , 2012 .
[88] L. McKenzie,et al. ON THE EXISTENCE OF GENERAL EQUILIBRIUM FOR A COMPETITIVE MARKET , 1959 .
[89] Masayuki Takahashi. Equilibrium points of stochastic non-cooperative $n$-person games , 1964 .
[90] J. Neumann,et al. Theory of Games and Economic Behavior. , 1945 .