FIXP-membership via Convex Optimization: Games, Cakes, and Markets

We introduce a new technique for proving membership of problems in FIXP – the class capturing the complexity of computing a fixed-point of an algebraic circuit. Our technique constructs a “pseudogate” which can be used as a black box when building FIXP circuits. This pseudogate, which we term the “OPT-gate”, can solve most convex optimization problems. Using the OPT-gate, we prove new FIXP-membership results, and we generalize and simplify several known results from the literature on fair division, game theory and competitive markets. In particular, we prove complexity results for two classic problems: computing a market equilibrium in the Arrow-Debreu model with general concave utilities is in FIXP, and computing an envy-free division of a cake with general valuations is FIXP-complete. We further showcase the wide applicability of our technique, by using it to obtain simplified proofs and extensions of known FIXP-membership results for equilibrium computation for various types of strategic games, as well as the pseudomarket mechanism of Hylland and Zeckhauser. 1 ar X iv :2 11 1. 06 87 8v 1 [ cs .C C ] 1 2 N ov 2 02 1

[1]  Kristoffer Arnsfelt Hansen,et al.  Computational Complexity of Proper Equilibrium , 2018, EC.

[2]  Kristoffer Arnsfelt Hansen,et al.  Exact Algorithms for Solving Stochastic Games , 2012, ArXiv.

[3]  Kristoffer Arnsfelt Hansen,et al.  Strong Approximate Consensus Halving and the Borsuk-Ulam Theorem , 2021, ICALP.

[4]  H. Steinhaus,et al.  Sur la division pragmatique , 1949 .

[5]  M. Pycia,et al.  A Pseudo-Market Approach to Allocation with Priorities , 2018, American Economic Journal: Microeconomics.

[6]  Vijay V. Vazirani,et al.  An Auction-Based Market Equilibrium Algorithm for the Separable Gross Substitutability Case , 2004, APPROX-RANDOM.

[7]  Sylvain Sorin,et al.  Stochastic Games and Applications , 2003 .

[8]  K. Arrow,et al.  EXISTENCE OF AN EQUILIBRIUM FOR A COMPETITIVE ECONOMY , 1954 .

[9]  Alexandros Hollender,et al.  On the Complexity of Equilibrium Computation in First-Price Auctions , 2021, EC.

[10]  Marie-Françoise Roy,et al.  Real algebraic geometry , 1992 .

[11]  Ruta Mehta,et al.  Dichotomies in Equilibrium Computation and Membership of PLC Markets in FIXP , 2016, Theory Comput..

[12]  Paul W. Goldberg,et al.  The complexity of computing a Nash equilibrium , 2006, STOC '06.

[13]  Ariel D. Procaccia,et al.  Cake cutting: not just child's play , 2013, CACM.

[14]  Haris Aziz,et al.  A Discrete and Bounded Envy-Free Cake Cutting Protocol for Any Number of Agents , 2016, 2016 IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS).

[15]  Ruta Mehta,et al.  Settling the complexity of Leontief and PLC exchange markets under exact and approximate equilibria , 2017, STOC.

[16]  L. Brouwer Über Abbildung von Mannigfaltigkeiten , 1911 .

[17]  R. Selten Reexamination of the perfectness concept for equilibrium points in extensive games , 1975, Classics in Game Theory.

[18]  Kurt Mehlhorn,et al.  An Improved Combinatorial Polynomial Algorithm for the Linear Arrow-Debreu Market , 2015, SODA.

[19]  Kurt Mehlhorn,et al.  A combinatorial polynomial algorithm for the linear Arrow-Debreu market , 2012, Inf. Comput..

[20]  D. Foley Resource allocation and the public sector , 1967 .

[21]  Paul W. Goldberg,et al.  A Survey of PPAD-Completeness for Computing Nash Equilibria , 2011, ArXiv.

[22]  Kousha Etessami,et al.  On the Complexity of Nash Equilibria and Other Fixed Points , 2010, SIAM J. Comput..

[23]  L. McKenzie,et al.  On Equilibrium in Graham's Model of World Trade and Other Competitive Systems , 1954 .

[24]  Paul G. Spirakis,et al.  Computing Approximate Nash Equilibria in Polymatrix Games , 2015, Algorithmica.

[25]  A. Mas-Colell,et al.  Microeconomic Theory , 1995 .

[26]  Steven J. Brams,et al.  Fair division - from cake-cutting to dispute resolution , 1998 .

[27]  K. Schittkowski,et al.  NONLINEAR PROGRAMMING , 2022 .

[28]  Amin Saberi,et al.  Approximating Market Equilibria , 2003, RANDOM-APPROX.

[29]  Miquel Oliu-Barton,et al.  New Algorithms for Solving Zero-Sum Stochastic Games , 2020, Math. Oper. Res..

[30]  Herbert E. Scarf,et al.  The Approximation of Fixed Points of a Continuous Mapping , 1967 .

[31]  Amin Saberi,et al.  Leontief economies encode nonzero sum two-player games , 2006, SODA '06.

[32]  R. Zeckhauser,et al.  The Efficient Allocation of Individuals to Positions , 1979, Journal of Political Economy.

[33]  Hervé Moulin,et al.  A New Solution to the Random Assignment Problem , 2001, J. Econ. Theory.

[34]  Mihalis Yannakakis,et al.  Equilibria, Fixed Points, and Complexity Classes , 2008, STACS.

[35]  Atila Abdulkadiroglu,et al.  RANDOM SERIAL DICTATORSHIP AND THE CORE FROM RANDOM ENDOWMENTS IN HOUSE ALLOCATION PROBLEMS , 1998 .

[36]  L. Shapley,et al.  Stochastic Games* , 1953, Proceedings of the National Academy of Sciences.

[37]  J. Neumann Zur Theorie der Gesellschaftsspiele , 1928 .

[38]  F. Su Rental Harmony: Sperner's Lemma in Fair Division , 1999 .

[39]  D. Gale Equilibrium in a discrete exchange economy with money , 1984 .

[40]  W. Karush Minima of Functions of Several Variables with Inequalities as Side Conditions , 2014 .

[41]  丸山 徹 Convex Analysisの二,三の進展について , 1977 .

[42]  J. Nash Equilibrium Points in N-Person Games. , 1950, Proceedings of the National Academy of Sciences of the United States of America.

[43]  H. Poincaré,et al.  Sur les courbes définies par les équations différentielles(III) , 1885 .

[44]  Xiaotie Deng,et al.  Settling the complexity of computing two-player Nash equilibria , 2007, JACM.

[45]  I. Glicksberg A FURTHER GENERALIZATION OF THE KAKUTANI FIXED POINT THEOREM, WITH APPLICATION TO NASH EQUILIBRIUM POINTS , 1952 .

[46]  Paul W. Goldberg,et al.  The Hairy Ball Problem is PPAD-Complete , 2019, ICALP.

[47]  C. Berge Topological Spaces: including a treatment of multi-valued functions , 2010 .

[48]  Jack M. Robertson,et al.  Cake-cutting algorithms - be fair if you can , 1998 .

[49]  Douglas R. Woodall,et al.  Dividing a cake fairly , 1980 .

[50]  E. Damme Refinements of the Nash Equilibrium Concept , 1983 .

[51]  Kristoffer Arnsfelt Hansen,et al.  The Computational Complexity of Trembling Hand Perfection and Other Equilibrium Refinements , 2010, SAGT.

[52]  M. Slater Lagrange Multipliers Revisited , 2014 .

[53]  E. Sperner Neuer beweis für die invarianz der dimensionszahl und des gebietes , 1928 .

[54]  W. Stromquist How to Cut a Cake Fairly , 1980 .

[55]  Karol Borsuk Drei Sätze über die n-dimensionale euklidische Sphäre , 1933 .

[56]  Kousha Etessami,et al.  The complexity of computing a (quasi-)perfect equilibrium for an n-player extensive form game , 2021, Games Econ. Behav..

[57]  László A. Végh,et al.  A strongly polynomial algorithm for linear exchange markets , 2018, STOC.

[58]  Ariel D. Procaccia Thou Shalt Covet Thy Neighbor's Cake , 2009, IJCAI.

[59]  Paul G. Spirakis,et al.  Computing Exact Solutions of Consensus Halving and the Borsuk-Ulam Theorem , 2019, ICALP.

[60]  O. Mangasarian,et al.  The Fritz John Necessary Optimality Conditions in the Presence of Equality and Inequality Constraints , 1967 .

[61]  A. M. Fink,et al.  Equilibrium in a stochastic $n$-person game , 1964 .

[62]  S. Kakutani A generalization of Brouwer’s fixed point theorem , 1941 .

[63]  Bronisław Knaster,et al.  Ein Beweis des Fixpunktsatzes für n-dimensionale Simplexe , 1929 .

[64]  H. Varian Equity, Envy and Efficiency , 1974 .

[65]  J. Geanakoplos Nash and Walras equilibrium via Brouwer , 2003 .

[66]  John Fearnley,et al.  Inapproximability Results for Approximate Nash Equilibria , 2016, WINE.

[67]  Christos H. Papadimitriou,et al.  On the Complexity of the Parity Argument and Other Inefficient Proofs of Existence , 1994, J. Comput. Syst. Sci..

[68]  K. Fan Fixed-point and Minimax Theorems in Locally Convex Topological Linear Spaces. , 1952, Proceedings of the National Academy of Sciences of the United States of America.

[69]  F. Echenique,et al.  Constrained Pseudo-Market Equilibrium , 2019, American Economic Review.

[70]  F. John Extremum Problems with Inequalities as Subsidiary Conditions , 2014 .

[71]  Kristoffer Arnsfelt Hansen,et al.  The Complexity of Approximating a Trembling Hand Perfect Equilibrium of a Multi-player Game in Strategic Form , 2014, SAGT.

[72]  Vijay V. Vazirani,et al.  On Computability of Equilibria in Markets with Production , 2013, SODA.

[73]  Mihalis Yannakakis,et al.  Computational Complexity of the Hylland-Zeckhauser Scheme for One-Sided Matching Markets , 2020, ITCS.

[74]  Nikhil R. Devanur,et al.  Market equilibrium via a primal--dual algorithm for a convex program , 2008, JACM.

[75]  Kamal Jain,et al.  A polynomial time algorithm for computing an Arrow-Debreu market equilibrium for linear utilities , 2004, 45th Annual IEEE Symposium on Foundations of Computer Science.

[76]  P. Hall On Representatives of Subsets , 1935 .

[77]  Aviad Rubinstein,et al.  Settling the Complexity of Computing Approximate Two-Player Nash Equilibria , 2016, 2016 IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS).

[78]  Eric van Damme,et al.  Non-Cooperative Games , 2000 .

[79]  Gerhard J. Woeginger,et al.  On the complexity of cake cutting , 2007, Discret. Optim..

[80]  E. Rowland Theory of Games and Economic Behavior , 1946, Nature.

[81]  D. Gale The law of supply and demand , 1955 .

[82]  Xiaotie Deng,et al.  Algorithmic Solutions for Envy-Free Cake Cutting , 2012, Oper. Res..

[83]  R. B. Bapat,et al.  A constructive proof of a permutation-based generalization of Sperner's lemma , 1989, Math. Program..

[84]  Gerard Debreu,et al.  A Social Equilibrium Existence Theorem* , 1952, Proceedings of the National Academy of Sciences.

[85]  Amin Saberi,et al.  The complexity of equilibria: Hardness results for economies via a correspondence with games , 2008, Theor. Comput. Sci..

[86]  Nikhil R. Devanur,et al.  An Improved Approximation Scheme for Computing Arrow-Debreu Prices for the Linear Case , 2003, FSTTCS.

[87]  Mihalis Yannakakis,et al.  DATE AND TIME ! ! ! A Complementary Pivot Algorithm for Market Equilibrium under Separable , Piecewise-Linear Concave Utilities , 2012 .

[88]  L. McKenzie,et al.  ON THE EXISTENCE OF GENERAL EQUILIBRIUM FOR A COMPETITIVE MARKET , 1959 .

[89]  Masayuki Takahashi Equilibrium points of stochastic non-cooperative $n$-person games , 1964 .

[90]  J. Neumann,et al.  Theory of Games and Economic Behavior. , 1945 .