Explainability of Deep SAR ATR Through Feature Analysis

[1]  Rob Fergus,et al.  Visualizing and Understanding Convolutional Networks , 2013, ECCV.

[2]  Andrew Zisserman,et al.  Very Deep Convolutional Networks for Large-Scale Image Recognition , 2014, ICLR.

[3]  Anupam Agrawal,et al.  Target detection in SAR images using SIFT , 2015, 2015 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT).

[4]  Trevor Darrell,et al.  Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation , 2013, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[5]  Antonio De Maio,et al.  Automatic Target Recognition of Military Vehicles With Krawtchouk Moments , 2017, IEEE Transactions on Aerospace and Electronic Systems.

[6]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[7]  Christian Szegedy,et al.  DeepPose: Human Pose Estimation via Deep Neural Networks , 2013, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[8]  Benjamin Lewis,et al.  Generative adversarial networks for SAR image realism , 2018, Defense + Security.

[9]  G LoweDavid,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004 .

[10]  Fang Liu,et al.  Task-Oriented GAN for PolSAR Image Classification and Clustering , 2019, IEEE Transactions on Neural Networks and Learning Systems.

[11]  Qun Zhao,et al.  Support vector machines for SAR automatic target recognition , 2001 .

[12]  M. W. Roth NEURAL NETWORKS FOR AUTOMATIC TARGET RECOGNITION , 2015 .

[13]  Geoffrey E. Hinton,et al.  ImageNet classification with deep convolutional neural networks , 2012, Commun. ACM.

[14]  Ali Khenchaf,et al.  Ship Profile Imaging Using Multipath Backscattering , 2019, Remote. Sens..

[15]  Thomas Brox,et al.  Striving for Simplicity: The All Convolutional Net , 2014, ICLR.

[16]  N. Otsu A threshold selection method from gray level histograms , 1979 .

[17]  P. Tait Introduction to Radar Target Recognition , 2005 .

[18]  Chao Lu,et al.  Automatic Target Classification — Experiments on the MSTAR SAR Images , 2005, Sixth International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing and First ACIS International Workshop on Self-Assembling Wireless Network.

[19]  Andrea Vedaldi,et al.  Salient Deconvolutional Networks , 2016, ECCV.

[20]  David Malmgren-Hansen,et al.  Convolutional neural networks for SAR image segmentation , 2015, 2015 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT).

[21]  Nabil Aouf,et al.  SAR Specific Noise Based Data Augmentation for Deep Learning , 2019, 2019 International Radar Conference (RADAR).

[22]  Maoguo Gong,et al.  Change Detection in Synthetic Aperture Radar Images Based on Deep Neural Networks , 2016, IEEE Transactions on Neural Networks and Learning Systems.

[23]  Xuan Li,et al.  SAR ATR based on dividing CNN into CAE and SNN , 2015, 2015 IEEE 5th Asia-Pacific Conference on Synthetic Aperture Radar (APSAR).

[24]  Jing Hu,et al.  SAR Automatic Target Recognition Based on Dictionary Learning and Joint Dynamic Sparse Representation , 2016, IEEE Geoscience and Remote Sensing Letters.

[25]  Hongwei Liu,et al.  Convolutional Neural Network With Data Augmentation for SAR Target Recognition , 2016, IEEE Geoscience and Remote Sensing Letters.

[26]  María Vanrell,et al.  Understanding learned CNN features through Filter Decoding with Substitution , 2015, ArXiv.

[27]  Timothy D. Ross,et al.  Evaluation of SAR ATR algorithm performance sensitivity to MSTAR extended operating conditions , 1998, Defense, Security, and Sensing.

[28]  R. Schumacher,et al.  Non-cooperative target identification of battlefield targets - classification results based on SAR images , 2005, IEEE International Radar Conference, 2005..

[29]  Yu Zhong,et al.  Enlightening Deep Neural Networks with Knowledge of Confounding Factors , 2016, 2017 IEEE International Conference on Computer Vision Workshops (ICCVW).

[30]  Erfu Yang,et al.  A Deep Convolutional Generative Adversarial Networks (DCGANs)-Based Semi-Supervised Method for Object Recognition in Synthetic Aperture Radar (SAR) Images , 2018, Remote. Sens..

[31]  Percy Liang,et al.  Understanding Black-box Predictions via Influence Functions , 2017, ICML.

[32]  Fei-Fei Li,et al.  Large-Scale Video Classification with Convolutional Neural Networks , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[33]  Ram M. Narayanan,et al.  Classification via the Shadow Region in SAR Imagery , 2012, IEEE Transactions on Aerospace and Electronic Systems.

[34]  Roy Edgar Hansen,et al.  Enhancing target shadows in SAR images , 2007 .

[35]  Haipeng Wang,et al.  Target Classification Using the Deep Convolutional Networks for SAR Images , 2016, IEEE Transactions on Geoscience and Remote Sensing.

[36]  Jerry L. Eaves,et al.  Introduction to Radar , 1987 .

[37]  G. J. Owirka,et al.  Automatic target recognition using enhanced resolution SAR data , 1999 .

[38]  Pierfrancesco Lombardo,et al.  SAR prescreening using both target and shadow information , 2001, Proceedings of the 2001 IEEE Radar Conference (Cat. No.01CH37200).

[39]  Haipeng Wang,et al.  SAR target recognition based on deep learning , 2014, 2014 International Conference on Data Science and Advanced Analytics (DSAA).

[40]  Alessio Balleri,et al.  SAR image dataset of military ground targets with multiple poses for ATR , 2017, Security + Defence.

[41]  David Casasent,et al.  A new SVM for distorted SAR object classification , 2005, SPIE Defense + Commercial Sensing.

[42]  Mike Brookes,et al.  Automatic recognition of MSTAR targets using radar shadow and superresolution features , 2005, Proceedings. (ICASSP '05). IEEE International Conference on Acoustics, Speech, and Signal Processing, 2005..

[43]  H. Scott Clouse,et al.  Convolutional neural networks for synthetic aperture radar classification , 2016, SPIE Defense + Security.

[44]  David Morgan,et al.  Deep convolutional neural networks for ATR from SAR imagery , 2015, Defense + Security Symposium.

[45]  Carlos Guestrin,et al.  "Why Should I Trust You?": Explaining the Predictions of Any Classifier , 2016, ArXiv.

[46]  Eduard Ayguadé,et al.  On the Behavior of Convolutional Nets for Feature Extraction , 2017, J. Artif. Intell. Res..