Design of an enhanced hybrid fuzzy P+ID controller for a mechanical manipulator

We propose in this paper an enhanced fuzzy P+ID controller to improve control performance in both dynamic transient and steady-state periods for mechanical manipulators under uncertainty. The fuzzy P+ID controller adds only two additional parameters to be tuned relative to the original PID controller. One of these parameters is mainly used to reduce a steady-state error. The other is used to speed up the dynamic response. A simulation study and experimental results for a two-link manipulator with uncertainty demonstrate the superior control performance of the proposed fuzzy P+ID controllers.

[1]  Rui J. P. de Figueiredo,et al.  Nonlinear Feedback Control Systems: An Operator Theory Approach , 1993 .

[2]  H. R. Berenji,et al.  Fuzzy Logic Controllers , 1992 .

[3]  H. Zimmermann,et al.  Fuzzy sets theory and applications , 1986 .

[4]  C. Desoer,et al.  Feedback Systems: Input-Output Properties , 1975 .

[5]  Wei Li,et al.  Design of a hybrid fuzzy logic proportional plus conventional integral-derivative controller , 1998, IEEE Trans. Fuzzy Syst..

[6]  Robert M. Sanner,et al.  Gaussian Networks for Direct Adaptive Control , 1991, 1991 American Control Conference.

[7]  Hamid R. Berenji,et al.  Learning and tuning fuzzy logic controllers through reinforcements , 1992, IEEE Trans. Neural Networks.

[8]  Guanrong Chen,et al.  Design and analysis of a fuzzy proportional-integral-derivative controller , 1996, Fuzzy Sets Syst..

[9]  Frank L. Lewis,et al.  Multilayer neural-net robot controller with guaranteed tracking performance , 1996, IEEE Trans. Neural Networks.

[10]  Wei Li Optimization of a fuzzy controller using neural network , 1994, Proceedings of 1994 IEEE 3rd International Fuzzy Systems Conference.

[11]  Jay A. Farrell,et al.  Stability and approximator convergence in nonparametric nonlinear adaptive control , 1998, IEEE Trans. Neural Networks.

[12]  Guanrong Chen,et al.  New design and stability analysis of fuzzy proportional-derivative control systems , 1994, IEEE Trans. Fuzzy Syst..

[13]  Jyh-Shing Roger Jang,et al.  Self-learning fuzzy controllers based on temporal backpropagation , 1992, IEEE Trans. Neural Networks.

[14]  William Siler,et al.  Fuzzy control theory: A nonlinear case , 1990, Autom..

[15]  Nikolaos Papanikolopoulos,et al.  Incremental fuzzy expert PID control , 1990 .

[16]  Ebrahim Mamdani,et al.  Applications of fuzzy algorithms for control of a simple dynamic plant , 1974 .

[17]  Matthew T. Mason,et al.  Robot Motion: Planning and Control , 1983 .

[18]  Hassan K. Khalil,et al.  Adaptive control of a class of nonlinear discrete-time systems using neural networks , 1995, IEEE Trans. Autom. Control..

[19]  Ebrahim H. Mamdani,et al.  A linguistic self-organizing process controller , 1979, Autom..

[20]  Hans-Jürgen Zimmermann,et al.  Fuzzy Set Theory - and Its Applications , 1985 .

[21]  John J. Craig,et al.  Introduction to Robotics Mechanics and Control , 1986 .

[22]  Marios M. Polycarpou,et al.  Stable adaptive neural control scheme for nonlinear systems , 1996, IEEE Trans. Autom. Control..

[23]  Frank L. Lewis,et al.  CMAC neural networks for control of nonlinear dynamical systems: Structure, stability and passivity , 1997, Autom..