Nonlinear one-step-ahead control using neural networks: Control strategy and stability design

A nonlinear one-step-ahead control strategy based on a neural network model is proposed for nonlinear SISO processes. The neural network used for controller design is a feedforward network with external recurrent terms. The training of the neural network model is implemented by using a recursive least-squares (RLS)-based algorithm. Considering the case of the nonlinear processes with time delay, the extension of the mentioned neural control scheme to d-step-ahead predictive neural control is proposed to compensate the influence of the time-delay. Then the stability analysis of the neural-network-based one-step-ahead control system is presented based on Lyapunov theory. From the stability investigation, the stability condition for the neural control system is obtained. The method is illustrated with some simulated examples, including the control of a continuous stirred tank reactor (CSTR).