Computing Dominance-Based Solution Concepts

Two common criticisms of Nash equilibrium are its dependence on very demanding epistemic assumptions and its computational intractability. We study the computational properties of less demanding set-valued solution concepts that are based on varying notions of dominance. These concepts are intuitively appealing, they always exist, and admit unique minimal solutions in important subclasses of games. Examples include Shapley's saddles, Harsanyi and Selten's primitive formations, Basu and Weibull's CURB sets, and Dutta and Laslier's minimal covering sets. We propose two generic algorithms for computing these concepts and investigate for which classes of games and which properties of the underlying dominance notion the algorithms are sound and efficient.

[1]  Peter C. Ordeshook,et al.  Symmetric Spatial Games Without Majority Rule Equilibria , 1976, American Political Science Review.

[2]  L. Shapley SOME TOPICS IN TWO-PERSON GAMES , 1963 .

[3]  John Duggan,et al.  Dutta's Minimal Covering Set and Shapley's Saddles , 1996 .

[4]  Paulo Barelli,et al.  Consistency of beliefs and epistemic conditions for Nash and correlated equilibria , 2009, Games Econ. Behav..

[5]  Eric van Damme,et al.  Non-Cooperative Games , 2000 .

[6]  Bhaskar Dutta,et al.  Comparison functions and choice correspondences , 1999 .

[7]  Felix A. Fischer,et al.  The Computational Complexity of Weak Saddles , 2009, Theory of Computing Systems.

[8]  Bhaskar Dutta Covering sets and a new condorcet choice correspondence , 1988 .

[9]  Peter C. Fishburn,et al.  Non-cooperative stochastic dominance games , 1978 .

[10]  Felix Brandt,et al.  Minimal stable sets in tournaments , 2008, J. Econ. Theory.

[11]  Klaus Ritzberger,et al.  Strategic games beyond expected utility , 2011 .

[12]  John C. Harsanyi,et al.  Общая теория выбора равновесия в играх / A General Theory of Equilibrium Selection in Games , 1989 .

[13]  David C. Fisher,et al.  Optimal strategies for random tournament games , 1995 .

[14]  R. Aumann,et al.  Epistemic Conditions for Nash Equilibrium , 1995 .

[15]  J. Weibull,et al.  Strategy subsets closed under rational behavior , 1991 .

[16]  Vincent Conitzer,et al.  Complexity of (iterated) dominance , 2005, EC '05.

[17]  Felix A. Fischer,et al.  On the Complexity of Iterated Weak Dominance in Constant-Sum Games , 2009, SAGT.

[18]  Felix A. Fischer,et al.  On the Complexity of Iterated Weak Dominance in Constant-Sum Games , 2010, Theory of Computing Systems.

[19]  M. Breton,et al.  The Bipartisan Set of a Tournament Game , 1993 .

[20]  ConitzerVincent,et al.  The ACM transactions on economics and computation , 2013 .

[21]  John Duggan,et al.  Choice-theoretic Solutions for Strategic Form Games ∗ , 2014 .

[22]  David Gale,et al.  Review: R. Duncan Luce and Howard Raiffa, Games and decisions: Introduction and critical survey , 1958 .

[23]  Paul D. Seymour,et al.  A counterexample to a conjecture of Schwartz , 2013, Soc. Choice Welf..

[24]  S. Vajda,et al.  GAMES AND DECISIONS; INTRODUCTION AND CRITICAL SURVEY. , 1958 .

[25]  Larry Samuelson,et al.  Dominated strategies and common knowledge , 1992 .

[26]  W. A. Wallis,et al.  UNCOVERED SETS , 2011 .

[27]  David Pearce Rationalizable Strategic Behavior and the Problem of Perfection , 1984 .

[28]  Tuomas Sandholm,et al.  Algorithms for Closed Under Rational Behavior (CURB) Sets , 2010, J. Artif. Intell. Res..

[29]  Eitan Zemel,et al.  The Complexity of Eliminating Dominated Strategies , 1993, Math. Oper. Res..

[30]  D. Knuth,et al.  A note on strategy elimination in bimatrix games , 1988 .

[31]  E. Rowland Theory of Games and Economic Behavior , 1946, Nature.

[32]  J. Neumann Zur Theorie der Gesellschaftsspiele , 1928 .

[33]  Roger B. Myerson,et al.  Game theory - Analysis of Conflict , 1991 .

[34]  John Duggan,et al.  Dominance-based Solutions for Strategic Form Games , 1998 .

[35]  Andrés Perea,et al.  A one-person doxastic characterization of Nash strategies , 2007, Synthese.

[36]  John Duggan,et al.  Mixed refinements of Shapley's saddles and weak tournaments , 2001, Soc. Choice Welf..

[37]  Jennifer Ryan,et al.  Tournament games and positive tournaments , 1995, J. Graph Theory.

[38]  Kristoffer Arnsfelt Hansen,et al.  The Computational Complexity of Trembling Hand Perfection and Other Equilibrium Refinements , 2010, SAGT.

[39]  Tilman B oumi rgers PURE STRATEGY DOMINANCE , 1993 .

[40]  David C. Fisher,et al.  Optimal strategies for a generalized “scissors, paper, and stone” game , 1992 .

[41]  Robert Wilson The finer structure of revealed preference , 1970 .

[42]  Felix A. Fischer,et al.  Computing the minimal covering set , 2008, Math. Soc. Sci..

[43]  Xiaotie Deng,et al.  Settling the complexity of computing two-player Nash equilibria , 2007, JACM.

[44]  B. Bernheim Rationalizable Strategic Behavior , 1984 .

[45]  Christian W. Bach,et al.  Pairwise epistemic conditions for Nash equilibrium , 2014, Games Econ. Behav..

[46]  S. Vajda Some topics in two-person games , 1971 .

[47]  Paul W. Goldberg,et al.  The complexity of computing a Nash equilibrium , 2006, STOC '06.

[48]  Richard D. McKelvey,et al.  Covering, Dominance, and Institution Free Properties of Social Choice , 1986 .