Autonomous Terrain Mapping and Classification Using Hidden Markov Models

This paper presents a new approach for terrain mapping and classification using mobile robots with 2D laser range finders. Our algorithm generates 3D terrain maps and classifies navigable and non-navigable regions on those maps using Hidden Markov models. The maps generated by our approach can be used for path planning, navigation, local obstacle avoidance, detection of changes in the terrain, and object recognition. We propose a map segmentation algorithm based on Markov Random Fields, which removes small errors in the classification. In order to validate our algorithms, we present experimental results using two robotic platforms.

[1]  Gaurav S. Sukhatme,et al.  Towards 3D mapping in large urban environments , 2004, 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566).

[2]  Cang Ye,et al.  A new terrain mapping method for mobile robots obstacle negotiation , 2003, SPIE Defense + Commercial Sensing.

[3]  Takeo Kanade,et al.  High-Resolution Terrain Map from Multiple Sensor Data , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[4]  Jean Ponce,et al.  Computer Vision: A Modern Approach , 2002 .

[5]  Wolfram Burgard,et al.  A real-time algorithm for mobile robot mapping with applications to multi-robot and 3D mapping , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[6]  Wolfram Burgard,et al.  A real-time expectation-maximization algorithm for acquiring multiplanar maps of indoor environments with mobile robots , 2004, IEEE Transactions on Robotics and Automation.

[7]  Edward J. Delp,et al.  Robust and efficient image segmentation approaches using Markov random field models , 2003, J. Electronic Imaging.

[8]  Patrick Hébert,et al.  Uncertain map making in natural environments , 1996, Proceedings of IEEE International Conference on Robotics and Automation.

[9]  Regis Hoffman,et al.  Terrain mapping for a walking planetary rover , 1994, IEEE Trans. Robotics Autom..

[10]  Yoram Koren,et al.  The vector field histogram-fast obstacle avoidance for mobile robots , 1991, IEEE Trans. Robotics Autom..

[11]  Gaurav S. Sukhatme,et al.  Most valuable player: a robot device server for distributed control , 2001, Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No.01CH37180).

[12]  Jr. G. Forney,et al.  The viterbi algorithm , 1973 .

[13]  Bernardo Wagner,et al.  Using 3D laser range data for SLAM in outdoor environments , 2003, Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453).

[14]  J.-S. Gutmann,et al.  AMOS: comparison of scan matching approaches for self-localization in indoor environments , 1996, Proceedings of the First Euromicro Workshop on Advanced Mobile Robots (EUROBOT '96).

[15]  Simon Lacroix,et al.  High resolution terrain mapping using low attitude aerial stereo imagery , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[16]  Lynne E. Parker,et al.  Incremental multi-agent robotic mapping of outdoor terrains , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[17]  J. Laurie Snell,et al.  Markov Random Fields and Their Applications , 1980 .

[18]  Suya You,et al.  Approaches to Large-Scale Urban Modeling , 2003, IEEE Computer Graphics and Applications.

[19]  Wolfram Burgard,et al.  Monte Carlo Localization: Efficient Position Estimation for Mobile Robots , 1999, AAAI/IAAI.

[20]  Sebastian Thrun,et al.  Scan Alignment and 3-D Surface Modeling with a Helicopter Platform , 2003, FSR.

[21]  Simon Lacroix,et al.  High resolution terrain mapping with an autonomous blimp , 2002, IEEE/RSJ International Conference on Intelligent Robots and Systems.

[22]  Christian Früh,et al.  Constructing 3D City Models by Merging Aerial and Ground Views , 2003, IEEE Computer Graphics and Applications.

[23]  Lawrence R. Rabiner,et al.  A tutorial on hidden Markov models and selected applications in speech recognition , 1989, Proc. IEEE.

[24]  Omead Amidi,et al.  3-D Site Mapping with the CMU Autonomous Helicopter , 1998 .

[25]  Sebastian Thrun,et al.  Large-Scale Robotic 3-D Mapping of Urban Structures , 2004, ISER.