Spreading sequences in active sensing: A review

Active sensing is a growing research field with long-standing open problems, whose applications range from CDMA communication systems, ultrasonic imaging or ranging systems to name a few. In those applications, spreading sequences are usually transmitted in a bursting manner, making their aperiodic correlation the most important feature to be considered, since it determines how easily the transmission can be detected by the receiver. Hence, the selection of the spreading sequence with good aperiodic correlation properties has a large impact on the final system performance. This paper presents a revision of the aperiodic spreading sequences used for active sensing systems available in the literature so it aims to serve as a reference for researchers in the field.

[1]  P. Fan,et al.  Spreading sequence sets with zero correlation zone , 2000 .

[2]  Martin H. Ackroyd,et al.  The Design of Huffman Sequences , 1970, IEEE Transactions on Aerospace and Electronic Systems.

[3]  Ning Zhang,et al.  Polyphase sequence with low autocorrelations , 1993, IEEE Trans. Inf. Theory.

[4]  A. Robert Calderbank,et al.  Doppler Resilient Golay Complementary Waveforms , 2008, IEEE Transactions on Information Theory.

[5]  George L. Turin,et al.  An introduction to digital matched filters , 1976 .

[6]  G. Turin,et al.  An introduction to matched filters , 1960, IRE Trans. Inf. Theory.

[7]  E. N. Fowle The design of FM pulse compression signals , 1964, IEEE Trans. Inf. Theory.

[8]  R. Sivaswamy Self-Clutter Cancellation and Ambiguity Properties of Subcomplementary Sequences , 1982, IEEE Transactions on Aerospace and Electronic Systems.

[9]  Peter B. Borwein,et al.  Polyphase sequences with low autocorrelation , 2005, IEEE Transactions on Information Theory.

[10]  Hai Huyen Dam,et al.  Polyphase sequence design using a genetic algorithm , 2004, 2004 IEEE 59th Vehicular Technology Conference. VTC 2004-Spring (IEEE Cat. No.04CH37514).

[11]  Robert L. Frank,et al.  Polyphase complementary codes , 1980, IEEE Trans. Inf. Theory.

[12]  Pingzhi Fan,et al.  Existence of Binary $Z$-Complementary Pairs , 2011, IEEE Signal Processing Letters.

[13]  P. Rapajic,et al.  Doppler optimised mismatched filters , 1991 .

[14]  P. Fan,et al.  Lower bounds on correlation of spreading sequence set with low or zero correlation zone , 2000 .

[15]  James A. Davis,et al.  Peak-to-mean power control in OFDM, Golay complementary sequences and Reed-Muller codes , 1998, Proceedings. 1998 IEEE International Symposium on Information Theory (Cat. No.98CH36252).

[16]  August W. Rihaczek,et al.  Range Sidelobe Suppression for Barker Codes , 1971, IEEE Transactions on Aerospace and Electronic Systems.

[17]  Costas N. Georghiades,et al.  Complementary sequences for ISI channel estimation , 2001, IEEE Trans. Inf. Theory.

[18]  Pingzhi Fan,et al.  Generalized Pairwise Z-Complementary Codes , 2008, IEEE Signal Processing Letters.

[19]  A. Robert Calderbank,et al.  Waveform Diversity in Radar Signal Processing , 2009, IEEE Signal Processing Magazine.

[20]  Álvaro Hernández,et al.  Ultrasonic Array for Obstacle Detection Based on CDMA with Kasami Codes , 2011, Sensors.

[21]  Jesus Urena,et al.  Generation algorithm for multilevel LS codes , 2010 .

[22]  Sancho Salcedo-Sanz,et al.  A comparison of memetic algorithms for the spread spectrum radar polyphase codes design problem , 2008, Eng. Appl. Artif. Intell..

[23]  Mitsutoshi Hatori,et al.  Even-shift orthogonal sequences , 1969, IEEE Trans. Inf. Theory.

[24]  Ying-Cheng Lai,et al.  Spread-spectrum communication using binary spatiotemporal chaotic codes , 2005 .

[25]  P. Vijay Kumar,et al.  Quasi-orthogonal sequences for code-division multiple-access systems , 2000, IEEE Trans. Inf. Theory.

[26]  Álvaro Hernández,et al.  Efficient Correlator for LS Codes Generated from Orthogonal CSS , 2008, IEEE Communications Letters.

[27]  Mike Darnell,et al.  Synthesis of uncorrelated and nonsquare sets of multilevel complementary sequences , 1989 .

[28]  R. Sivaswamy Digital and Analog Subcomplementary Sequences for Pulse Compression , 1978, IEEE Transactions on Aerospace and Electronic Systems.

[29]  J. Storer,et al.  On binary sequences , 1961 .

[30]  Miroslav L. Dukic,et al.  A Method of a Spread-Spectrum Radar Polyphase Code Design , 1990, IEEE J. Sel. Areas Commun..

[31]  D. R. Morgan Comments on "The Effect of Differential Time Delays in the LMS Feedback Loop" , 1981 .

[32]  D. Szczegielniak,et al.  Structure Optimization of Phase-Coded Sounding Signals , 2010 .

[33]  Pingzhi Fan,et al.  Bounds on aperiodic and odd correlations of spreading sequences with low and zero correlation zone , 2001 .

[34]  Matthew G. Parker,et al.  A construction of binary Golay sequence pairs from odd‐length Barker sequences , 2009 .

[35]  M. Darnell Multi-level signals with good autocorrelation properties , 1991 .

[36]  Chao Zhang,et al.  General Method to Construct LS Codes by Complete Complementary Sequences , 2005, IEICE Trans. Commun..

[37]  Cunsheng Ding,et al.  Autocorrelation Values of Generalized Cyclotomic Sequences of Order Two , 1998, IEEE Trans. Inf. Theory.

[38]  D. Green,et al.  Polyphase power–residue sequences , 2003, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[39]  Hao He,et al.  Probing Waveform Synthesis and Receiver Filter Design , 2010, IEEE Signal Processing Magazine.

[40]  Fernando J. Álvarez,et al.  New pseudo-orthogonal family of polyphase codes to improve Doppler resilience , 2013, International Conference on Indoor Positioning and Indoor Navigation.

[41]  Martin H. Ackroyd,et al.  Synthesis of Efficient Huffman Sequences , 1972, IEEE Transactions on Aerospace and Electronic Systems.

[42]  F. Alvarez,et al.  Ultrasonic Local Positioning System with Large Covered Area , 2007, 2007 IEEE International Symposium on Intelligent Signal Processing.

[43]  Branislav M. Popovic,et al.  Generalized chirp-like polyphase sequences with optimum correlation properties , 1992, IEEE Trans. Inf. Theory.

[44]  Naoki Suehiro,et al.  Modulatable orthogonal sequences and their application to SSMA systems , 1988, IEEE Trans. Inf. Theory.

[45]  Michael D. Sherar,et al.  The use of phase codes in ultrasound imaging: SNR gain and bandwidth requirements , 2009 .

[46]  F.F. Kretschmer,et al.  A New Class of Polyphase Pulse Compression Codes and Techniques , 1981, IEEE Transactions on Aerospace and Electronic Systems.

[47]  G. Carter,et al.  The generalized correlation method for estimation of time delay , 1976 .

[48]  Anthony M. Kerdock,et al.  A Class of Low-Rate Nonlinear Binary Codes , 1972, Inf. Control..

[49]  B. Lewis,et al.  Doppler Properties of Polyphase Coded Pulse Compression Waveforms , 1982, IEEE Transactions on Aerospace and Electronic Systems.

[50]  K. Gerlach,et al.  Low sidelobe radar waveforms derived from orthogonal matrices , 1991 .

[51]  Yongwan Park,et al.  A macro-cell statistical location estimation method for TD-SCDMA networks , 2009, Signal Process..

[52]  Jesus Urena,et al.  Doppler-tolerant receiver for an ultrasonic LPS based on Kasami sequences , 2013 .

[53]  M. Antweiler,et al.  Polyphase Barker sequences , 1989 .

[54]  M. Feigenbaum Quantitative universality for a class of nonlinear transformations , 1978 .

[55]  Martin H. Ackroyd Huffman sequences with approximately uniform envelopes or cross-correlation functions (Corresp.) , 1977, IEEE Trans. Inf. Theory.

[56]  S. Z. Budi¿in,et al.  Generalised subcomplementary sets of sequences , 1987 .

[57]  Petre Stoica,et al.  Computational Design of Sequences With Good Correlation Properties , 2012, IEEE Transactions on Signal Processing.

[58]  Henry Leung,et al.  Design of piecewise maps for chaotic spread-spectrum communications using genetic programming , 2002 .

[59]  Henrique J. A. da Silva,et al.  Generalized Chu polyphase sequences , 2009, 2009 International Conference on Telecommunications.

[60]  Dan P. Scholnik Optimal filters for range-time sidelobe suppression , 2000, 2000 10th European Signal Processing Conference.

[61]  M. H. Ackroyd,et al.  Amplitude and phase modulated pulse trains for radar , 1971 .

[62]  C.-C. TSENG,et al.  Complementary sets of sequences , 1972, IEEE Trans. Inf. Theory.

[63]  S.P. Singh,et al.  Polyphase Coded signal Design for Netted Radar Systems , 2006, 2006 CIE International Conference on Radar.

[64]  Derek H. Smith,et al.  The Construction of Orthogonal Variable Spreading Factor Codes from Semi-Bent Functions , 2012, IEEE Transactions on Wireless Communications.

[65]  S. Z. Budisin New multilevel complementary pairs of sequences , 1990 .

[66]  R. E. Challis,et al.  A Golay sequencer based NDT system for highly attenuating materials , 1992 .

[67]  Huizhi Cai,et al.  Orthogonal polyphase code sets design for MIMO radar using Tabu Search , 2012, 2012 IEEE International Conference on Intelligent Control, Automatic Detection and High-End Equipment.

[68]  K. Subba Rao,et al.  Thirty-two phase sequences design with good autocorrelation properties , 2010 .

[69]  E. Lorenz Deterministic nonperiodic flow , 1963 .

[70]  Rodney A. Kennedy,et al.  Merit factor based comparison of new polyphase sequences , 1998, IEEE Communications Letters.

[71]  Guang Gong,et al.  Signal Design for Good Correlation: For Wireless Communication, Cryptography, and Radar , 2005 .

[72]  Hsiao-Hwa Chen,et al.  Design of perfect complementary codes to implement interference-free CDMA systems , 2004, IEEE Global Telecommunications Conference, 2004. GLOBECOM '04..

[73]  Hsiao-Hwa Chen,et al.  The Next Generation CDMA Technologies , 2007 .

[74]  Jonathan Jedwab,et al.  A Survey of the Merit Factor Problem for Binary Sequences , 2004, SETA.

[75]  Mohsen Guizani,et al.  Inter-Group Complementary Codes for Interference-Resistant CDMA Wireless Communications , 2008, IEEE Transactions on Wireless Communications.

[76]  Pingzhi Fan,et al.  A class of pseudonoise sequences over GF(P) with low correlation zone , 2001, IEEE Trans. Inf. Theory.

[77]  Guang Gong,et al.  Large Zero Autocorrelation Zones of Golay Sequences and Their Applications , 2013, IEEE Transactions on Communications.

[78]  Karl Gerlach,et al.  Radar waveforms derived from orthogonal matrices , 1989 .

[79]  Jesús Ureña,et al.  Efficient Architectures for the Generation and Correlation of Binary CSS Derived From Different Kernel Lengths , 2013, IEEE Transactions on Signal Processing.

[80]  Jie Chen,et al.  Optimisation of complete complementary codes in MIMO radar system , 2010 .

[81]  Jyrki Lahtonen,et al.  On the odd and the aperiodic correlation properties of the Kasami sequences , 1995, IEEE Trans. Inf. Theory.

[82]  Martin H. Ackroyd,et al.  Optimum Mismatched Filters for Sidelobe Suppression , 1973, IEEE Transactions on Aerospace and Electronic Systems.

[83]  B. Saffari,et al.  New classes of finite unimodular sequences with unimodular Fourier transforms. Circulant Hadamard matrices with complex entries , 1995 .

[84]  R. Sivaswamy,et al.  Multiphase Complementary Codes , 1978, IEEE Trans. Inf. Theory.

[85]  Mark R. Bell Information theory and radar waveform design , 1993, IEEE Trans. Inf. Theory.

[86]  Slawomir Stanczak,et al.  Are LAS-codes a miracle ? , 2001, GLOBECOM'01. IEEE Global Telecommunications Conference (Cat. No.01CH37270).

[87]  Pingzhi Fan,et al.  Multilevel Hadamard matrices and zero correlation zone sequences , 2006 .

[88]  John G. Proakis,et al.  Digital signal processing (3rd ed.): principles, algorithms, and applications , 1996 .

[89]  Pingzhi Fan,et al.  Aperiodic autocorrelation of Frank sequences , 1995 .

[90]  Juan C. García,et al.  Efficient filter for the generation/correlation of Golay binary sequence pairs , 2014, Int. J. Circuit Theory Appl..

[91]  Mike Darnell,et al.  Synthesis of multilevel complementary sequences , 1988 .

[92]  Frank B. Gross,et al.  A new digital beamforming approach for SDMA using spreading sequence array weights , 2008, Signal Process..

[93]  S.P. Singh,et al.  Modified simulated Annealing Algorithm for Poly Phase Code Design , 2006, 2006 IEEE International Symposium on Industrial Electronics.

[94]  Naoki Suehiro,et al.  N-shift cross-orthogonal sequences , 1988, IEEE Trans. Inf. Theory.

[95]  Derek H. Smith,et al.  Exploiting Spatial Separations in CDMA Systems With Correlation Constrained Sets of Hadamard Matrices , 2010, IEEE Transactions on Information Theory.

[96]  S P Singh,et al.  Polyphase Radar signal Design Using Modified Simulated Annealing Algorithm , 2007 .

[97]  Lei Hu,et al.  Aperiodic correlation of Kasami sequences in the small set , 2011, Applicable Algebra in Engineering, Communication and Computing.

[98]  David C. Chu,et al.  Polyphase codes with good periodic correlation properties (Corresp.) , 1972, IEEE Trans. Inf. Theory.

[99]  M. Schroeder Number Theory in Science and Communication , 1984 .

[100]  Peter B. Borwein,et al.  A complete description of Golay pairs for lengths up to 100 , 2003, Math. Comput..

[101]  M. Friese,et al.  Polyphase Barker sequences up to length 31 , 1994 .

[102]  Pingzhi Fan,et al.  Z-complementary Binary Sequences , 2007, IEEE Signal Processing Letters.

[103]  Jie Li,et al.  Generalized pairwise complementary codes with set-wise uniform interference-free windows , 2006, IEEE Journal on Selected Areas in Communications.

[104]  L. Chua The Genesis of Chua's circuit , 1992 .

[105]  Marcel J. E. Golay,et al.  Complementary series , 1961, IRE Trans. Inf. Theory.

[106]  Robert L. Frank,et al.  Polyphase codes with good nonperiodic correlation properties , 1963, IEEE Trans. Inf. Theory.

[107]  Pingzhi Fan,et al.  SEQUENCE DESIGN FOR COMMUNICATIONS APPLICATIONS , 1996 .

[108]  Hyuckjae Lee,et al.  LS Codes Aided Channel Estimation for MIMO-OFDM Systems in Multipath Environment , 2006, IEEE Vehicular Technology Conference.

[109]  M. A. Do,et al.  Fully integrated 10 GHz CMOS VCO , 2001 .

[110]  Wai Ho Mow,et al.  Design of spreading codes for quasi-synchronous CDMA with intercell interference , 2006, IEEE J. Sel. Areas Commun..

[111]  A. R. Brenner Polyphase Barker sequences up to length 45 with small alphabets , 1998 .

[112]  Mathias Friese,et al.  Polyphase Barker sequences up to length 36 , 1996, IEEE Trans. Inf. Theory.

[113]  Evangelos Kranakis Primality and cryptography , 1986, Wiley-Teubner series in computer science.

[114]  Kai-Uwe Schmidt,et al.  Sequences with small correlation , 2015, Designs, Codes and Cryptography.

[115]  O. Rössler An equation for continuous chaos , 1976 .

[116]  Augusto Aubry,et al.  Ambiguity Function Shaping for Cognitive Radar Via Complex Quartic Optimization , 2013, IEEE Transactions on Signal Processing.

[117]  S. Budisin,et al.  Golay kernel 10 decomposition , 2011 .

[118]  Jian Li,et al.  Transmit codes and receive filters for radar , 2008, IEEE Signal Processing Magazine.

[119]  Gary B. Lamont,et al.  Radar phase-coded waveform design using MOEAs , 2012, 2012 IEEE Congress on Evolutionary Computation.

[120]  M. Antweiler,et al.  Merit factor of Chu and Frank sequences , 1990 .

[121]  Augusto Aubry,et al.  A Doppler Robust Design of Transmit Sequence and Receive Filter in the Presence of Signal-Dependent Interference , 2014, IEEE Transactions on Signal Processing.

[122]  Lei Ding,et al.  Adaptive Binary Spreading Sequence Assignment Using Semidefinite Relaxation , 2013, IEEE Wireless Communications Letters.

[123]  David Munoz-Rodriguez,et al.  Chaotic sequences for multiple access , 1998 .

[124]  Robert L. Frank,et al.  Phase shift pulse codes with good periodic correlation properties (Corresp.) , 1962, IRE Trans. Inf. Theory.

[125]  T. Felhauer New class of polyphase pulse compression code with unique characteristics , 1992 .

[126]  Dilip V. Sarwate,et al.  Bounds on crosscorrelation and autocorrelation of sequences (Corresp.) , 1979, IEEE Transactions on Information Theory.

[127]  P. Green Iteratively reweighted least squares for maximum likelihood estimation , 1984 .

[128]  R. C. Heimiller,et al.  Phase shift pulse codes with good periodic correlation properties , 1961, IRE Trans. Inf. Theory.

[129]  Frank Kretschmer,et al.  Linear Frequency Modulation Derived Polyphase Pulse Compression Codes , 1981, IEEE Transactions on Aerospace and Electronic Systems.

[130]  Pingzhi Fan,et al.  Crosscorrelations of Frank sequences and Chu sequences , 1994 .

[131]  Vladimir I. Levenshtein New Lower Bounds on Aperiodic Crosscorrelation of Binary Codes , 1999, IEEE Trans. Inf. Theory.

[132]  Yong Liang Guan,et al.  On Even-Period Binary Z-Complementary Pairs with Large ZCZs , 2014, IEEE Signal Processing Letters.

[133]  David A. Huffman,et al.  The generation of impulse-equivalent pulse trains , 1962, IRE Trans. Inf. Theory.

[134]  G.L. Turin,et al.  An introduction to digitial matched filters , 1976, Proceedings of the IEEE.

[135]  J. J. Burlingame,et al.  Poly-phase codes and optimal filters for multiple user ranging , 1995 .

[136]  Nadav Levanon,et al.  Cross-correlation of long binary signals with longer mismatched filters , 2005 .

[137]  Rathinakumar Appuswamy,et al.  A New Framework for Constructing Mutually Orthogonal Complementary Sets and ZCZ Sequences , 2006, IEEE Transactions on Information Theory.

[138]  Hsiao-Hwa Chen,et al.  A multicarrier CDMA architecture based on orthogonal complementary codes for new generations of wideband wireless communications , 2001, IEEE Commun. Mag..

[139]  Yong Liang Guan,et al.  On optimal binary Z-complementary pair of odd period , 2013, 2013 IEEE International Symposium on Information Theory.

[140]  J.A. Jensen,et al.  Use of modulated excitation signals in medical ultrasound. Part I: basic concepts and expected benefits , 2005, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[141]  Javier Del Ser,et al.  A hybrid harmony search algorithm for the spread spectrum radar polyphase codes design problem , 2012, Expert Syst. Appl..

[142]  Richard J. Turyn,et al.  Hadamard Matrices, Baumert-Hall Units, Four-Symbol Sequences, Pulse Compression, and Surface Wave Encodings , 1974, J. Comb. Theory A.

[143]  Lloyd R. Welch,et al.  Lower bounds on the maximum cross correlation of signals (Corresp.) , 1974, IEEE Trans. Inf. Theory.

[144]  Takafumi Hayashi A Class of Ternary Sequence Sets with a Zero-Correlation Zone for Periodic, Aperiodic, and Odd Correlation Functions , 2003, IEICE Trans. Fundam. Electron. Commun. Comput. Sci..

[145]  Su Khiong Yong,et al.  UWB direct chaotic communication technology , 2005 .

[146]  D. Hertz,et al.  Time delay estimation by generalized cross correlation methods , 1984 .

[147]  T. Felhauer Design and analysis of new p(n,k) polyphase pulse compression codes , 1994 .

[148]  S. Jauregui Complementary sequences of length 26 (Corresp.) , 1962, IRE Trans. Inf. Theory.

[149]  Branislav M. Popovic,et al.  Generalized Chirp-Like Sequences With Zero Correlation Zone , 2010, IEEE Transactions on Information Theory.

[150]  Hao He,et al.  Waveform Design for Active Sensing Systems: A Computational Approach , 2012 .

[151]  Jian Li,et al.  Joint Design of the Receive Filter and Transmit Sequence for Active Sensing , 2013, IEEE Signal Processing Letters.

[152]  M. Rangaswamy,et al.  Phase-Coded Waveforms and Their Design , 2009, IEEE Signal Processing Magazine.

[153]  Pingzhi Fan,et al.  Multiple Binary ZCZ Sequence Sets With Good Cross-Correlation Property Based on Complementary Sequence Sets , 2010, IEEE Transactions on Information Theory.

[154]  Douglas R Stinson,et al.  Contemporary design theory : a collection of surveys , 1992 .

[155]  Fulvio Gini,et al.  Waveform design and diversity for advanced radar systems , 2012 .

[156]  S.P. Singh,et al.  Polyphase Sequences Design-Using MSAA , 2007, International Conference on Computational Intelligence and Multimedia Applications (ICCIMA 2007).

[157]  Jung-Lang Yu,et al.  Blind channel estimation for MC-CDMA systems with long spreading codes , 2005, Signal Process..

[158]  Jie Li,et al.  A Generic Construction of Generalized Chirp-Like Sequence Sets with Optimal Zero Correlation Property , 2013, IEEE Communications Letters.

[159]  Lajos Hanzo,et al.  Preamble Design Using Embedded Signaling for OFDM Broadcast Systems Based on Reduced-Complexity Distance Detection , 2011, IEEE Transactions on Vehicular Technology.