Kernel correlation as an affinity measure in point-sampled vision problems

Range sensors, such as laser range finder and stereo vision systems, return point-samples of a scene. Typical point-sampled vision problems include registration, regularization and merging. We introduce a robust distance minimization approach to solving the three classes of problems. The approach is based on correlating kernels centered at point-samples, a technique we call kernel correlation. Kernel correlation is an affinity measure, and it contains an M-estimator mechanism for distance minimization. Kernel correlation is also an entropy measure of the point set configuration. Maximizing kernel correlation implies enforcing compact point set. The effectiveness of kernel correlation is evaluated by the three classes of problems. First, the kernel correlation based registration method is shown to be efficient, accurate and robust, and its performance is compared with the iterative closest point (ICP) algorithm. Second, kernel correlation is adopted as an object space regularizer in the stereo vision problem. Kernel correlation is discontinuity preserving and usually can be applied in large scales, resulting in smooth appearance of the estimated model. The performance of the algorithm is evaluated both quantitatively and qualitatively. Finally, kernel correlation plays a point-sample merging role in a multiple view stereo algorithm. Kernel correlation enforces smoothness on point samples from all views, not just within a single view. As a result we can put both the photo-consistency and the model merging constraints into a single energy function. Convincing reconstruction results are demonstrated.

[1]  R. B. Potts Some generalized order-disorder transformations , 1952, Mathematical Proceedings of the Cambridge Philosophical Society.

[2]  E. Parzen On Estimation of a Probability Density Function and Mode , 1962 .

[3]  Richard Sinkhorn A Relationship Between Arbitrary Positive Matrices and Doubly Stochastic Matrices , 1964 .

[4]  Richard O. Duda,et al.  Pattern classification and scene analysis , 1974, A Wiley-Interscience publication.

[5]  S. Ullman,et al.  The interpretation of visual motion , 1977 .

[6]  Takeo Kanade,et al.  An Iterative Image Registration Technique with an Application to Stereo Vision , 1981, IJCAI.

[7]  Andrew P. Witkin,et al.  Scale-Space Filtering , 1983, IJCAI.

[8]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[9]  J P Frisby,et al.  PMF: A Stereo Correspondence Algorithm Using a Disparity Gradient Limit , 1985, Perception.

[10]  Takeo Kanade,et al.  Stereo by Intra- and Inter-Scanline Search Using Dynamic Programming , 1985, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[11]  Wolfgang Spohn,et al.  The Representation of , 1986 .

[12]  Andrew Blake,et al.  Visual Reconstruction , 1987, Deep Learning for EEG-Based Brain–Computer Interfaces.

[13]  Peter J. Rousseeuw,et al.  Robust regression and outlier detection , 1987 .

[14]  M. Hebert,et al.  The Representation, Recognition, and Positioning of 3-D Shapes from Range Data , 1987 .

[15]  William E. Lorensen,et al.  Marching cubes: A high resolution 3D surface construction algorithm , 1987, SIGGRAPH.

[16]  Kim L. Boyer,et al.  Color-Encoded Structured Light for Rapid Active Ranging , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[17]  Gunilla Borgefors,et al.  Hierarchical Chamfer Matching: A Parametric Edge Matching Algorithm , 1988, IEEE Trans. Pattern Anal. Mach. Intell..

[18]  Y. J. Tejwani,et al.  Robot vision , 1989, IEEE International Symposium on Circuits and Systems,.

[19]  F. A. Seiler,et al.  Numerical Recipes in C: The Art of Scientific Computing , 1989 .

[20]  D. Greig,et al.  Exact Maximum A Posteriori Estimation for Binary Images , 1989 .

[21]  Brian G. Schunck,et al.  Discontinuity preserving surface reconstruction , 1989, Proceedings CVPR '89: IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[22]  Lee Westover,et al.  Footprint evaluation for volume rendering , 1990, SIGGRAPH.

[23]  E. Adelson,et al.  The Plenoptic Function and the Elements of Early Vision , 1991 .

[24]  H. C. Longuet-Higgins,et al.  An algorithm for associating the features of two images , 1991, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[25]  Gérard G. Medioni,et al.  Object modeling by registration of multiple range images , 1991, Proceedings. 1991 IEEE International Conference on Robotics and Automation.

[26]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[27]  James J. Little Accurate Early Detection of Discontinuities , 1992 .

[28]  Jitendra Malik,et al.  A Computational Framework for Determining Stereo Correspondence from a Set of Linear Spatial Filters , 1991, ECCV.

[29]  Gérard G. Medioni,et al.  Object modelling by registration of multiple range images , 1992, Image Vis. Comput..

[30]  Paul J. Besl,et al.  A Method for Registration of 3-D Shapes , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[31]  William H. Press,et al.  The Art of Scientific Computing Second Edition , 1998 .

[32]  Jitendra Malik,et al.  Computational framework for determining stereo correspondence from a set of linear spatial filters , 1992, Image Vis. Comput..

[33]  Michael Brady,et al.  Feature-based correspondence: an eigenvector approach , 1992, Image Vis. Comput..

[34]  Edward H. Adelson,et al.  Layered representation for motion analysis , 1993, Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[35]  Daniel P. Huttenlocher,et al.  Comparing Images Using the Hausdorff Distance , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[36]  Minoru Maruyama,et al.  Range Sensing by Projecting Multiple Slits with Random Cuts , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[37]  Richard Szeliski,et al.  Hierarchical spline-based image registration , 1994, 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[38]  Carlo Tomasi,et al.  Good features to track , 1994, 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[39]  Takeo Kanade,et al.  A Stereo Matching Algorithm with an Adaptive Window: Theory and Experiment , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[40]  Takeo Kanade,et al.  A multi-body factorization method for motion analysis , 1995, Proceedings of IEEE International Conference on Computer Vision.

[41]  Leonard McMillan,et al.  A List-Priority Rendering Algorithm for Redisplaying Projected Surfaces , 1995 .

[42]  Katsushi Ikeuchi,et al.  Sensor Modeling, Probabilistic Hypothesis Generation, and Robust Localization for Object Recognition , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[43]  Leonard McMillan,et al.  Plenoptic Modeling: An Image-Based Rendering System , 2023 .

[44]  Richard Szeliski,et al.  Extraction of Concise and Realistic 3-D Models from Real Data , 1995 .

[45]  Takeo Kanade,et al.  Virtualized reality: concepts and early results , 1995, Proceedings IEEE Workshop on Representation of Visual Scenes (In Conjunction with ICCV'95).

[46]  Harry Shum,et al.  Motion estimation with quadtree splines , 1995, Proceedings of IEEE International Conference on Computer Vision.

[47]  Richard Szeliski,et al.  Recovering the Position and Orientation of Free-Form Objects from Image Contours Using 3D Distance Maps , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[48]  Stan Z. Li,et al.  On Discontinuity-Adaptive Smoothness Priors in Computer Vision , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[49]  Alex Pentland,et al.  Recursive Estimation of Motion, Structure, and Focal Length , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[50]  Pascal Fua,et al.  Reconstructing complex surfaces from multiple stereo views , 1995, Proceedings of IEEE International Conference on Computer Vision.

[51]  Marc Levoy,et al.  A volumetric method for building complex models from range images , 1996, SIGGRAPH.

[52]  Richard Szeliski,et al.  The lumigraph , 1996, SIGGRAPH.

[53]  Takeo Kanade,et al.  A stereo machine for video-rate dense depth mapping and its new applications , 1996, Proceedings CVPR IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[54]  Steven M. Seitz,et al.  Toward image-based scene representation using view morphing , 1996, Proceedings of 13th International Conference on Pattern Recognition.

[55]  Jitendra Malik,et al.  Reconstructing Polyhedral Models of Architectural Scenes from Photographs , 1996, ECCV.

[56]  Edward H. Adelson,et al.  A unified mixture framework for motion segmentation: incorporating spatial coherence and estimating the number of models , 1996, Proceedings CVPR IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[57]  Marc Levoy,et al.  Light field rendering , 1996, SIGGRAPH.

[58]  P. Anandan,et al.  Parallax Geometry of Pairs of Points for 3D Scene Analysis , 1996, ECCV.

[59]  Gregory D. Hager,et al.  Real-time tracking of image regions with changes in geometry and illumination , 1996, Proceedings CVPR IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[60]  Yuichi Ohta,et al.  Occlusion detectable stereo-occlusion patterns in camera matrix , 1996, Proceedings CVPR IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[61]  Robert T. Collins,et al.  A space-sweep approach to true multi-image matching , 1996, Proceedings CVPR IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[62]  Anand Rangarajan,et al.  The Softassign Procrustes Matching Algorithm , 1997, IPMI.

[63]  Maurizio Pilu,et al.  A direct method for stereo correspondence based on singular value decomposition , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[64]  Andrew E. Johnson,et al.  Registration and integration of textured 3-D data , 1997, Proceedings. International Conference on Recent Advances in 3-D Digital Imaging and Modeling (Cat. No.97TB100134).

[65]  Olivier D. Faugeras,et al.  Variational principles, surface evolution, PDEs, level set methods, and the stereo problem , 1998, IEEE Trans. Image Process..

[66]  Richard Szeliski,et al.  A layered approach to stereo reconstruction , 1998, Proceedings. 1998 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No.98CB36231).

[67]  Carlo Tomasi,et al.  A Pixel Dissimilarity Measure That Is Insensitive to Image Sampling , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[68]  Richard Szeliski,et al.  Layered depth images , 1998, SIGGRAPH.

[69]  Katsushi Ikeuchi,et al.  Consensus surfaces for modeling 3D objects from multiple range images , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).

[70]  Olga Veksler,et al.  A Variable Window Approach to Early Vision , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[71]  Takeo Kanade,et al.  Constructing virtual worlds using dense stereo , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).

[72]  P. Anandan,et al.  From 2D images to 2.5D sprites: a layered approach to modeling 3D scenes , 1999, Proceedings IEEE International Conference on Multimedia Computing and Systems.

[73]  Olga Veksler,et al.  Fast approximate energy minimization via graph cuts , 2001, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[74]  J. Príncipe,et al.  Information-Theoretic Learning Using Renyi's Quadratic Entropy , 1999 .

[75]  Harry Shum,et al.  Rendering with concentric mosaics , 1999, SIGGRAPH.

[76]  Andrew E. Johnson,et al.  Using Spin Images for Efficient Object Recognition in Cluttered 3D Scenes , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[77]  Olivier D. Faugeras,et al.  Statistical shape influence in geodesic active contours , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[78]  Dorin Comaniciu,et al.  Real-time tracking of non-rigid objects using mean shift , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[79]  Nello Cristianini,et al.  An Introduction to Support Vector Machines and Other Kernel-based Learning Methods , 2000 .

[80]  W. Freeman,et al.  Generalized Belief Propagation , 2000, NIPS.

[81]  Wolfram Burgard,et al.  A real-time algorithm for mobile robot mapping with applications to multi-robot and 3D mapping , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[82]  Gunnar Rätsch,et al.  An introduction to kernel-based learning algorithms , 2001, IEEE Trans. Neural Networks.

[83]  Trevor Hastie,et al.  The Elements of Statistical Learning , 2001 .

[84]  Richard Szeliski,et al.  Handling occlusions in dense multi-view stereo , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[85]  Szymon Rusinkiewicz,et al.  Real-time acquisition and rendering of large 3D models , 2001 .

[86]  Andrew W. Fitzgibbon,et al.  Robust Registration of 2D and 3D Point Sets , 2003, BMVC.

[87]  A Probabilistic Framework for Space Carving , 2001, ICCV.

[88]  D. Scharstein,et al.  A Taxonomy and Evaluation of Dense Two-Frame Stereo Correspondence Algorithms , 2001, Proceedings IEEE Workshop on Stereo and Multi-Baseline Vision (SMBV 2001).

[89]  Hugh F. Durrant-Whyte,et al.  A solution to the simultaneous localization and map building (SLAM) problem , 2001, IEEE Trans. Robotics Autom..

[90]  Dorin Comaniciu,et al.  Bayesian Kernel Tracking , 2002, DAGM-Symposium.

[91]  Vladimir Kolmogorov,et al.  Multi-camera Scene Reconstruction via Graph Cuts , 2002, ECCV.

[92]  Nikos Paragios,et al.  Matching Distance Functions: A Shape-to-Area Variational Approach for Global-to-Local Registration , 2002, ECCV.

[93]  Marc Levoy,et al.  Real-time 3D model acquisition , 2002, ACM Trans. Graph..

[94]  Nanning Zheng,et al.  Stereo Matching Using Belief Propagation , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[95]  Xavier Pennec,et al.  Multi-scale EM-ICP: A Fast and Robust Approach for Surface Registration , 2002, ECCV.

[96]  William T. Freeman,et al.  Understanding belief propagation and its generalizations , 2003 .

[97]  Li Zhang,et al.  Spacetime stereo: shape recovery for dynamic scenes , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[98]  Vladimir Kolmogorov,et al.  What energy functions can be minimized via graph cuts? , 2002, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[99]  D. Ruppert The Elements of Statistical Learning: Data Mining, Inference, and Prediction , 2004 .

[100]  Richard Szeliski,et al.  Matching 3-D anatomical surfaces with non-rigid deformations using octree-splines , 1993, Proceedings of IEEE Workshop on Biomedical Image Analysis.

[101]  B. Ripley,et al.  Robust Statistics , 2018, Encyclopedia of Mathematical Geosciences.

[102]  Demetri Terzopoulos,et al.  Snakes: Active contour models , 2004, International Journal of Computer Vision.

[103]  Michael Isard,et al.  CONDENSATION—Conditional Density Propagation for Visual Tracking , 1998, International Journal of Computer Vision.

[104]  Paul A. Viola,et al.  Alignment by Maximization of Mutual Information , 1997, International Journal of Computer Vision.

[105]  Peter Meer,et al.  ROBUST TECHNIQUES FOR COMPUTER VISION , 2004 .

[106]  Steven M. Seitz,et al.  Photorealistic Scene Reconstruction by Voxel Coloring , 1997, International Journal of Computer Vision.

[107]  K. Prazdny,et al.  Detection of binocular disparities , 2004, Biological Cybernetics.

[108]  P. Anandan,et al.  A computational framework and an algorithm for the measurement of visual motion , 1987, International Journal of Computer Vision.

[109]  Takeo Kanade,et al.  Shape and motion from image streams under orthography: a factorization method , 1992, International Journal of Computer Vision.

[110]  Kiriakos N. Kutulakos,et al.  A Theory of Shape by Space Carving , 2000, International Journal of Computer Vision.

[111]  Szymon Rusinkiewicz,et al.  Spacetime stereo: a unifying framework for depth from triangulation , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[112]  Marc Pollefeys,et al.  Multiple view geometry , 2005 .

[113]  Zhengyou Zhang,et al.  Iterative point matching for registration of free-form curves and surfaces , 1994, International Journal of Computer Vision.