A General Motion Model and Spatio-Temporal Filters for Computing Optical Flow

Traditional optical flow algorithms assume local image translational motion and apply simple image filtering techniques. Recent studies have taken two separate approaches toward improving the accuracy of computed flow: the application of spatio-temporal filtering schemes and the use of advanced motion models such as the affine model. Each has achieved some improvement over traditional algorithms in specialized situations but the computation of accurate optical flow for general motion has been elusive. In this paper, we exploit the interdependency between these two approaches and propose a unified approach. The general motion model we adopt characterizes arbitrary 3-D steady motion. Under perspective projection, we derive an image motion equation that describes the spatio-temporal relation of gray-scale intensity in an image sequence, thus making the utilization of 3-D filtering possible. However, to accommodate this motion model, we need to extend the filter design to derive additional motion constraint equations. Using Hermite polynomials, we design differentiation filters, whose orthogonality and Gaussian derivative properties insure numerical stability; a recursive relation facilitates application of the general nonlinear motion model while separability promotes efficiency. The resulting algorithm produces accurate optical flow and other useful motion parameters. It is evaluated quantitatively using the scheme established by Barron et al. (1994) and qualitatively with real images.

[1]  Tomaso A. Poggio,et al.  Motion Field and Optical Flow: Qualitative Properties , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[2]  Jack Sklansky,et al.  Multiple-order derivatives for detecting local image characteristics , 1987 .

[3]  Rama Chellappa,et al.  3-D Motion Estimation Using a Sequence of Noisy Stereo Images: Models, Estimation, and Uniqueness Results , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[4]  David J. Fleet,et al.  Computation of component image velocity from local phase information , 1990, International Journal of Computer Vision.

[5]  Yung-Chang Chen,et al.  Estimation of the velocity field of two-dimensional deformable motion , 1993, Pattern Recognit..

[6]  J. Kittler,et al.  Robust motion analysis , 1994, 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[7]  Rama Chellappa,et al.  Motion-model-based boundary extraction , 1995, Proceedings of International Symposium on Computer Vision - ISCV.

[8]  Yiannis Aloimonos,et al.  Estimating the heading direction using normal flow , 1994, International Journal of Computer Vision.

[9]  H. C. Longuet-Higgins,et al.  The interpretation of a moving retinal image , 1980, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[10]  J. J. Koenderink,et al.  Extraction of motion parallax structure in the visual system II , 1990, Biological Cybernetics.

[11]  Rama Chellappa,et al.  A computational vision approach to image registration , 1993, IEEE Trans. Image Process..

[12]  Hans-Hellmut Nagel,et al.  Displacement vectors derived from second-order intensity variations in image sequences , 1983, Comput. Vis. Graph. Image Process..

[13]  K. Prazdny Determining The Instantaneous Direction Of Motion From Optical Flow Generated By A Curvilinearly Moving Observer , 1981, Other Conferences.

[14]  S. Negahdaripour,et al.  Motion recovery from image sequences using First-order optical flow information , 1991, Proceedings of the IEEE Workshop on Visual Motion.

[15]  Alan L. Yuille,et al.  A Model for the Estimate of Local Velocity , 1990, ECCV.

[16]  Michael Spann,et al.  Robust Computation of Optical Flow , 1995, BMVC.

[17]  P. Anandan Measuring Visual Motion From Image Sequences , 1987 .

[18]  Joseph K. Kearney,et al.  Optical Flow Estimation: An Error Analysis of Gradient-Based Methods with Local Optimization , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[19]  P. Burt,et al.  Mechanisms for isolating component patterns in the sequential analysis of multiple motion , 1991, Proceedings of the IEEE Workshop on Visual Motion.

[20]  J. Gibson The Senses Considered As Perceptual Systems , 1967 .

[21]  Hans-Hellmut Nagel,et al.  Direct Estimation of Optical Flow and of Its Derivatives , 1992 .

[22]  David J. Fleet,et al.  Performance of optical flow techniques , 1994, International Journal of Computer Vision.

[23]  Ajit Singh,et al.  An estimation-theoretic framework for image-flow computation , 1990, [1990] Proceedings Third International Conference on Computer Vision.

[24]  J. H. Duncan,et al.  On the Detection of Motion and the Computation of Optical Flow , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[25]  V. M. Generalized Gradient Schemes for the Measurement of Two-Dimensional Image Motion , .

[26]  Shmuel Peleg,et al.  A Three-Frame Algorithm for Estimating Two-Component Image Motion , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[27]  Thomas S. Huang,et al.  Solving three-dimensional small-rotation motion equations: Uniqueness, algorithms, and numerical results , 1983, Computer Vision Graphics and Image Processing.

[28]  R. Haralick,et al.  The Facet Approach to Optic Flow , 1983 .

[29]  A. Verri,et al.  A computational approach to motion perception , 1988, Biological Cybernetics.

[30]  B. Buxton,et al.  Monocular depth perception from optical flow by space time signal processing , 1983, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[31]  William B. Thompson,et al.  Analysis of Accretion and Deletion at Boundaries in Dynamic Scenes , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[32]  Yiannis Aloimonos,et al.  Obstacle Avoidance Using Flow Field Divergence , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[33]  Berthold K. P. Horn,et al.  Determining Optical Flow , 1981, Other Conferences.

[34]  J. Koenderink,et al.  Representation of local geometry in the visual system , 1987, Biological Cybernetics.

[35]  Takeo Kanade,et al.  An Iterative Image Registration Technique with an Application to Stereo Vision , 1981, IJCAI.

[36]  Tsai Hong Hong,et al.  Real-time Obstacle Avoidance Using Central Flow Divergence and Peripheral Flow | NIST , 1995 .

[37]  S. Ullman,et al.  Direct computation of the focus of expansion from velocity field measurements , 1991, Proceedings of the IEEE Workshop on Visual Motion.

[38]  Martin Herman,et al.  New visual invariants for obstacle detection using optical flow induced from general motion , 1992, [1992] Proceedings IEEE Workshop on Applications of Computer Vision.

[39]  Rama Chellappa,et al.  A reliable optical flow algorithm using 3-D hermite polynomials , 1993 .

[40]  K. Prazdny,et al.  Egomotion and relative depth map from optical flow , 2004, Biological Cybernetics.

[41]  Charles R. Johnson,et al.  Topics in Matrix Analysis , 1991 .

[42]  Yiannis Aloimonos,et al.  Estimating the Heading Direction Using Normal Flow EECTE , 1994 .

[43]  Thomas S. Huang,et al.  SOLVING THREE DIMENSIONAL SMALL-ROTATION MOTION EQUATIONS. , 1983, CVPR 1983.

[44]  Martin Herman,et al.  Real-time obstacle avoidance using central flow divergence and peripheral flow , 2017, Proceedings of IEEE International Conference on Computer Vision.

[45]  Gin-Shu Young SAFE NAVIGATION AND ACTIVE VISION FOR AUTONOMOUS VEHICLES A PURPOSIVE AND DIRECT SOLUTION , 1993 .

[46]  J. Koenderink,et al.  Extraction of motion parallax structure in the visual system I , 2004, Biological Cybernetics.

[47]  Edward H. Adelson,et al.  Layered representation for motion analysis , 1993, Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[48]  Richard A. Young,et al.  SIMULATION OF HUMAN RETINAL FUNCTION WITH THE GAUSSIAN DERIVATIVE MODEL. , 1986 .

[49]  Gilad Adiv,et al.  Inherent Ambiguities in Recovering 3-D Motion and Structure from a Noisy Flow Field , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[50]  S. Sitharama Iyengar,et al.  Introduction to parallel algorithms , 1998, Wiley series on parallel and distributed computing.

[51]  Alessandro Verri,et al.  Motion analysis from first-order properties of optical flow , 1992, CVGIP Image Underst..

[52]  Allen M. Waxman,et al.  Convected activation profiles and the measurement of visual motion , 1988, Proceedings CVPR '88: The Computer Society Conference on Computer Vision and Pattern Recognition.

[53]  Joseph JáJá,et al.  An Introduction to Parallel Algorithms , 1992 .

[54]  Jitendra Malik,et al.  Robust computation of optical flow in a multi-scale differential framework , 2005, International Journal of Computer Vision.

[55]  Gilad Adiv,et al.  Determining Three-Dimensional Motion and Structure from Optical Flow Generated by Several Moving Objects , 1985, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[56]  Rama Chellappa,et al.  Statistical Analysis of Inherent Ambiguities in Recovering 3-D Motion from a Noisy Flow Field , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[57]  David W. Murray,et al.  Scene Segmentation from Visual Motion Using Global Optimization , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[58]  Valdis Berzins,et al.  Dynamic Occlusion Analysis in Optical Flow Fields , 1985, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[59]  Ralph Hartley,et al.  Segmentation of optical flow fields by pyramid linking , 1985, Pattern Recognit. Lett..

[60]  Naresh Gupta Recovering shape and motion from a sequence of images , 1993 .

[61]  Hans-Hellmut Nagel,et al.  An Investigation of Smoothness Constraints for the Estimation of Displacement Vector Fields from Image Sequences , 1983, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[62]  David J. Heeger,et al.  Optical flow using spatiotemporal filters , 2004, International Journal of Computer Vision.

[63]  G. Stewart Introduction to matrix computations , 1973 .

[64]  A. Verri,et al.  Constraints for the computation of optical flow , 1989, [1989] Proceedings. Workshop on Visual Motion.

[65]  Jitendra Malik,et al.  Robust computation of optical flow in a multi-scale differential framework , 1993, 1993 (4th) International Conference on Computer Vision.