An iterative Kalman smoother/least-squares algorithm for the identification of delta-ARX models
暂无分享,去创建一个
[1] Paul McKenna. Delta operator:modelling forecasting and control , 1997 .
[2] Graham C. Goodwin,et al. On sampled-data models for nonlinear systems , 2005, IEEE Transactions on Automatic Control.
[3] Brett Ninness,et al. Robust maximum-likelihood estimation of multivariable dynamic systems , 2005, Autom..
[4] Heinz Unbehauen,et al. Continuous-time approaches to system identification - A survey , 1990, Autom..
[5] Graham C. Goodwin,et al. Rapprochement between continuous and discrete model reference adaptive control , 1986, Autom..
[6] Petre Stoica,et al. System identification from noisy measurements by using instrumental variables and subspace fitting , 1996 .
[7] Alan V. Oppenheim,et al. All-pole modeling of degraded speech , 1978 .
[8] Michel Verhaegen,et al. Linear and Non-linear System Identification Using Separable Least-Squares , 1997, Eur. J. Control.
[9] H. Howard Fan,et al. High Speed Adaptive Signal Progressing Using the Delta Operator, , 2001, Digit. Signal Process..
[10] Bengt Carlsson,et al. Estimation of continuous-time AR process parameters from discrete-time data , 1999, IEEE Trans. Signal Process..
[11] J. S. Gibson,et al. Least-squares estimation of input/output models for distributed linear systems in the presence of noise , 2000, Autom..
[12] Amin Khodabakhshian,et al. A New Identification Model for Power System Transfer Functions , 2003 .
[13] G. Goodwin,et al. High-speed digital signal processing and control , 1992, Proc. IEEE.
[14] L. E. Scales,et al. Introduction to Non-Linear Optimization , 1985 .
[15] H. Unbehauen,et al. Identification of continuous-time systems , 1991 .
[16] Masayoshi Tomizuka,et al. Parameter identification with derivative shift operator parametrization , 1999, Autom..
[17] Wei Xing Zheng,et al. Least-squares parameter estimation of linear systems with noisy input-output data , 2006, Int. J. Syst. Sci..
[18] G. Goodwin,et al. Improved finite word length characteristics in digital control using delta operators , 1986 .
[19] V. Kadirkamanathan,et al. Modelling and identification of non-linear deterministic systems in the delta-domain , 2007, Autom..
[20] Torsten Söderström,et al. Continuous-time AR process parameter estimation in presence of additive white noise , 1999, IEEE Trans. Signal Process..
[21] Lennart Ljung,et al. Initialisation aspects for subspace and output-error identification methods , 2003, 2003 European Control Conference (ECC).
[22] Morten Bach Lauritsen,et al. Delta-Domain Predictive Control and Identification for Control , 1997 .
[23] Niels Kjølstad Poulsen,et al. A state-space approach to the emulator-based GPC design , 1996 .
[24] Peter C. Young,et al. A Direct Approach to the Identification and Estimation of Continuous-time Systems from Discrete-time Data Based on Fixed Interval Smoothing , 1993 .
[25] Charles P. Neuman,et al. Properties of the delta operator model of dynamic physical systems , 1993, IEEE Trans. Syst. Man Cybern..
[26] Graham C. Goodwin,et al. Digital control and estimation : a unified approach , 1990 .
[27] Sean R. Anderson,et al. Predictive control of fast-sampled systems using the delta-operator , 2009, Int. J. Syst. Sci..
[28] L. Jetto,et al. Accurate derivative estimation from noisy data: a state-space approach , 1989 .
[29] Arie Yeredor,et al. The extended least squares criterion: minimization algorithms and applications , 2001, IEEE Trans. Signal Process..
[30] Emmanuel G. Collins,et al. A delta operator approach to discrete-time H ∞ control , 1999 .
[31] R. Shumway,et al. AN APPROACH TO TIME SERIES SMOOTHING AND FORECASTING USING THE EM ALGORITHM , 1982 .
[32] Gene H. Golub,et al. The differentiation of pseudo-inverses and non-linear least squares problems whose variables separate , 1972, Milestones in Matrix Computation.
[33] T. Söderström,et al. Least squares parameter estimation of continuous-time ARX models from discrete-time data , 1997, IEEE Trans. Autom. Control..
[34] Heinz Unbehauen,et al. Continuous-time Approaches to System Identification , 1988 .