Guarantees and limits of preprocessing in constraint satisfaction and reasoning

We present a first theoretical analysis of the power of polynomial-time preprocessing for important combinatorial problems from various areas in AI. We consider problems from Constraint Satisfaction, Global Constraints, Satisfiability, Nonmonotonic and Bayesian Reasoning under structural restrictions. All these problems involve two tasks: (i) identifying the structure in the input as required by the restriction, and (ii) using the identified structure to solve the reasoning task efficiently. We show that for most of the considered problems, task (i) admits a polynomial-time preprocessing to a problem kernel whose size is polynomial in a structural problem parameter of the input, in contrast to task (ii) which does not admit such a reduction to a problem kernel of polynomial size, subject to a complexity theoretic assumption. As a notable exception we show that the consistency problem for the AtMost-NValue constraint admits a polynomial kernel consisting of a quadratic number of variables and domain values. Our results provide a firm worst-case guarantees and theoretical boundaries for the performance of polynomial-time preprocessing algorithms for the considered problems.

[1]  Michael R. Fellows,et al.  Parameterized complexity: A framework for systematically confronting computational intractability , 1997, Contemporary Trends in Discrete Mathematics.

[2]  Stephen A. Cook,et al.  The complexity of theorem-proving procedures , 1971, STOC.

[3]  Alan K. Mackworth Constraint Satisfaction , 1985 .

[4]  Naomi Nishimura,et al.  Detecting Backdoor Sets with Respect to Horn and Binary Clauses , 2004, SAT.

[5]  Christian Bessiere,et al.  The Parameterized Complexity of Global Constraints , 2008, AAAI.

[6]  Ge Xia,et al.  Improved upper bounds for vertex cover , 2010, Theor. Comput. Sci..

[7]  Stefan Szeider,et al.  Backdoors to Satisfaction , 2011, The Multivariate Algorithmic Revolution and Beyond.

[8]  Stefan Szeider,et al.  Backdoors to Tractable Answer-Set Programming , 2011, IJCAI.

[9]  Victor W. Marek,et al.  Stable models and an alternative logic programming paradigm , 1998, The Logic Programming Paradigm.

[10]  Nicolas Beldiceanu Pruning for the Minimum Constraint Family and for the Number of Distinct Values Constraint Family , 2001, CP.

[11]  Rolf Niedermeier,et al.  Invitation to data reduction and problem kernelization , 2007, SIGA.

[12]  Peter van Beek,et al.  Improved Algorithms for the Global Cardinality Constraint , 2004, CP.

[13]  Henning Fernau,et al.  Kernel(s) for problems with no kernel: On out-trees with many leaves , 2008, TALG.

[14]  Piotr Sankowski,et al.  Maximum matchings via Gaussian elimination , 2004, 45th Annual IEEE Symposium on Foundations of Computer Science.

[15]  Jean-Charles Régin,et al.  Generalized Arc Consistency for Global Cardinality Constraint , 1996, AAAI/IAAI, Vol. 1.

[16]  Lance Fortnow,et al.  Infeasibility of instance compression and succinct PCPs for NP , 2007, J. Comput. Syst. Sci..

[17]  Martin Gebser,et al.  Advanced Preprocessing for Answer Set Solving , 2008, ECAI.

[18]  Bart Selman,et al.  Satisfiability Solvers , 2008, Handbook of Knowledge Representation.

[19]  Dan Roth,et al.  On the Hardness of Approximate Reasoning , 1993, IJCAI.

[20]  Rina Dechter,et al.  Cutset Sampling for Bayesian Networks , 2011, J. Artif. Intell. Res..

[21]  Stefan Szeider,et al.  Limits of Preprocessing , 2011, AAAI.

[22]  Saket Saurabh,et al.  Kernelization - Preprocessing with a Guarantee , 2012, The Multivariate Algorithmic Revolution and Beyond.

[23]  Armin Biere,et al.  Effective Preprocessing in SAT Through Variable and Clause Elimination , 2005, SAT.

[24]  A. Hasman,et al.  Probabilistic reasoning in intelligent systems: Networks of plausible inference , 1991 .

[25]  Toby Walsh,et al.  Range and Roots: Two common patterns for specifying and propagating counting and occurrence constraints , 2009, Artif. Intell..

[26]  Francesco M. Donini,et al.  Preprocessing of Intractable Problems , 2002, Inf. Comput..

[27]  Anders Yeo,et al.  Kernel bounds for disjoint cycles and disjoint paths , 2009, Theor. Comput. Sci..

[28]  Judea Pearl,et al.  Probabilistic reasoning in intelligent systems - networks of plausible inference , 1991, Morgan Kaufmann series in representation and reasoning.

[29]  Marko Samer,et al.  Constraint satisfaction with bounded treewidth revisited , 2010, J. Comput. Syst. Sci..

[30]  Ilkka Niemelä,et al.  Logic programs with stable model semantics as a constraint programming paradigm , 1999, Annals of Mathematics and Artificial Intelligence.

[31]  Marko Samer,et al.  Fixed-Parameter Tractability , 2021, Handbook of Satisfiability.

[32]  Hans L. Bodlaender A linear time algorithm for finding tree-decompositions of small treewidth , 1993, STOC '93.

[33]  Ernst W. Mayr,et al.  Computer Science - Theory and Applications, 5th International Computer Science Symposium in Russia, CSR 2010, Kazan, Russia, June 16-20, 2010. Proceedings , 2010, CSR.

[34]  Andrew Drucker,et al.  New Limits to Classical and Quantum Instance Compression , 2012, 2012 IEEE 53rd Annual Symposium on Foundations of Computer Science.

[35]  Xin-She Yang,et al.  Introduction to Algorithms , 2021, Nature-Inspired Optimization Algorithms.

[36]  Serge Gaspers,et al.  Exponential Time Algorithms - Structures, Measures, and Bounds , 2010 .

[37]  Rina Dechter,et al.  Tree Clustering for Constraint Networks , 1989, Artif. Intell..

[38]  Michael R. Fellows,et al.  Parameterized Complexity , 1998 .

[39]  Stefan Szeider,et al.  Kernels for Global Constraints , 2011, IJCAI.

[40]  Christer Bäckström,et al.  Parameterized Complexity and Kernel Bounds for Hard Planning Problems , 2013, CIAC.

[41]  Serge Gaspers Exponential Time Algorithms , 2010 .

[42]  Georg Gottlob,et al.  Fixed-parameter complexity in AI and nonmonotonic reasoning , 1999, Artif. Intell..

[43]  Michael R. Fellows,et al.  The Lost Continent of Polynomial Time: Preprocessing and Kernelization , 2006, IWPEC.

[44]  Willem Jan van Hoeve,et al.  Global Constraints , 2006, Handbook of Constraint Programming.

[45]  Gregory F. Cooper,et al.  The Computational Complexity of Probabilistic Inference Using Bayesian Belief Networks , 1990, Artif. Intell..

[46]  Jianer Chen,et al.  On Feedback Vertex Set: New Measure and New Structures , 2010, Algorithmica.

[47]  Bart Selman,et al.  On the connections between backdoors, restarts, and heavy-tailedness in combinatorial search , 2003 .

[48]  Victor W. Marek,et al.  Autoepistemic logic , 1991, JACM.

[49]  M. Krom The Decision Problem for a Class of First‐Order Formulas in Which all Disjunctions are Binary , 1967 .

[50]  Toby Walsh,et al.  Filtering Algorithms for the NValue Constraint , 2006, Constraints.

[51]  Christian Bessiere,et al.  Constraint Propagation , 2006, Handbook of Constraint Programming.

[52]  Toby Walsh,et al.  The Complexity of Global Constraints , 2004, AAAI.

[53]  Michael R. Fellows,et al.  On problems without polynomial kernels , 2009, J. Comput. Syst. Sci..

[54]  Faisal N. Abu-Khzam,et al.  A kernelization algorithm for d-Hitting Set , 2010, J. Comput. Syst. Sci..

[55]  Salil P. Vadhan,et al.  Computational Complexity , 2005, Encyclopedia of Cryptography and Security.

[56]  Stefan Rümmele,et al.  The Parameterized Complexity of Abduction , 2012, AAAI.

[57]  Judy Goldsmith,et al.  Nondeterminism Within P , 1993, SIAM J. Comput..

[58]  Judea Pearl,et al.  Bayesian Networks , 1998, Encyclopedia of Social Network Analysis and Mining. 2nd Ed..

[59]  Virginia Vassilevska Williams,et al.  Multiplying matrices faster than coppersmith-winograd , 2012, STOC '12.

[60]  Ton Kloks Treewidth, Computations and Approximations , 1994, Lecture Notes in Computer Science.

[61]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[62]  Janneke H. Bolt,et al.  Preprocessing the MAP Problem , 2006, Probabilistic Graphical Models.

[63]  Jean H. Gallier,et al.  Linear-Time Algorithms for Testing the Satisfiability of Propositional Horn Formulae , 1984, J. Log. Program..

[64]  Fedor V. Fomin,et al.  Exact exponential algorithms , 2013, CACM.

[65]  Toby Walsh,et al.  Handbook of Constraint Programming , 2006, Handbook of Constraint Programming.

[66]  Willard Van Orman Quine,et al.  The Problem of Simplifying Truth Functions , 1952 .