Communication lower bounds via critical block sensitivity

We use critical block sensitivity, a new complexity measure introduced by Huynh and Nordström (STOC 2012), to study the communication complexity of search problems. To begin, we give a simple new proof of the following central result of Huynh and Nordström: if S is a search problem with critical block sensitivity b, then every randomised two-party protocol solving a certain two-party lift of S requires Ω(b) bits of communication. Besides simplicity, our proof has the advantage of generalising to the multi-party setting. We combine these results with new critical block sensitivity lower bounds for Tseitin and Pebbling search problems to obtain the following applications. • Monotone circuit depth: We exhibit a monotone function on n variables whose monotone circuits require depth Ω(n/log n); previously, a bound of Ω(√n was known (Raz and Wigderson, JACM 1992). Moreover, we prove a tight Θ(√n) monotone depth bound for a function in monotone P. This implies an average-case hierarchy theorem within monotone P similar to a result of Filmus et al. (FOCS 2013). • Proof complexity: We prove new rank lower bounds as well as obtain the first length--space lower bounds for semi-algebraic proof systems, including Lovász--Schrijver and Lasserre (SOS) systems. In particular, these results extend and simplify the works of Beame et al. (SICOMP 2007) and Huynh and Nordström.

[1]  L. H.,et al.  Communication Networks , 1936, Nature.

[2]  Richard J. Lipton,et al.  Multi-party protocols , 1983, STOC.

[3]  Pavel Pudlák,et al.  The space complexity of cutting planes refutations , 2014, Electron. Colloquium Comput. Complex..

[4]  Yuan Zhou,et al.  Approximability and proof complexity , 2012, SODA.

[5]  S. Wright,et al.  Quadratic Residues and Non-Residues in Arithmetic Progression , 2011, 1111.2236.

[6]  Toniann Pitassi,et al.  Integrality gaps of 2 - o(1) for Vertex Cover SDPs in the Lovész-Schrijver Hierarchy , 2007, 48th Annual IEEE Symposium on Foundations of Computer Science (FOCS'07).

[7]  Satyanarayana V. Lokam,et al.  Communication Complexity of Simultaneous Messages , 2003, SIAM J. Comput..

[8]  Shengyu Zhang On the Tightness of the Buhrman-Cleve-Wigderson Simulation , 2009, ISAAC.

[9]  Madhur Tulsiani CSP gaps and reductions in the lasserre hierarchy , 2009, STOC '09.

[10]  Jakob Nordström,et al.  On the virtue of succinct proofs: amplifying communication complexity hardness to time-space trade-offs in proof complexity , 2012, STOC '12.

[11]  Jakob Nordström,et al.  Pebble Games, Proof Complexity, and Time-Space Trade-offs , 2013, Log. Methods Comput. Sci..

[12]  Hanif D. Sherali,et al.  A Hierarchy of Relaxations Between the Continuous and Convex Hull Representations for Zero-One Programming Problems , 1990, SIAM J. Discret. Math..

[13]  Mark Braverman,et al.  Tight Bounds for Set Disjointness in the Message Passing Model , 2013, ArXiv.

[14]  Moni Naor,et al.  Search problems in the decision tree model , 1991, [1991] Proceedings 32nd Annual Symposium of Foundations of Computer Science.

[15]  Ziv Bar-Yossef,et al.  An information statistics approach to data stream and communication complexity , 2002, The 43rd Annual IEEE Symposium on Foundations of Computer Science, 2002. Proceedings..

[16]  Chris Beck,et al.  Some trade-off results for polynomial calculus: extended abstract , 2013, STOC '13.

[17]  Siu Man Chan Just a Pebble Game , 2013, 2013 IEEE Conference on Computational Complexity.

[18]  Eli Ben-Sasson,et al.  Understanding Space in Proof Complexity: Separations and Trade-ofis via Substitutions (Extended Abstract) , 2011 .

[19]  Grant Schoenebeck,et al.  Linear Level Lasserre Lower Bounds for Certain k-CSPs , 2008, 2008 49th Annual IEEE Symposium on Foundations of Computer Science.

[20]  Alexander A. Sherstov Communication Lower Bounds Using Directional Derivatives , 2014, JACM.

[21]  Russell Impagliazzo,et al.  Time-space tradeoffs in resolution: superpolynomial lower bounds for superlinear space , 2012, STOC '12.

[22]  Toniann Pitassi,et al.  Hardness amplification in proof complexity , 2009, STOC '10.

[23]  A. Razborov Communication Complexity , 2011 .

[24]  Johan Håstad,et al.  A Simple Lower Bound for Monotone Clique Using a Communication Game , 1992, Inf. Process. Lett..

[25]  Eli Ben-Sasson,et al.  Short proofs are narrow—resolution made simple , 2001, JACM.

[26]  Silvio Micali,et al.  Probabilistic Encryption , 1984, J. Comput. Syst. Sci..

[27]  Madhur Tulsiani,et al.  A Linear Round Lower Bound for Lovasz-Schrijver SDP Relaxations of Vertex Cover , 2007, Twenty-Second Annual IEEE Conference on Computational Complexity (CCC'07).

[28]  Toniann Pitassi,et al.  Average Case Lower Bounds for Monotone Switching Networks , 2013, 2013 IEEE 54th Annual Symposium on Foundations of Computer Science.

[29]  Aaron Potechin,et al.  Bounds on Monotone Switching Networks for Directed Connectivity , 2009, 2010 IEEE 51st Annual Symposium on Foundations of Computer Science.

[30]  Noam Nisan,et al.  Multiparty Protocols, Pseudorandom Generators for Logspace, and Time-Space Trade-Offs , 1992, J. Comput. Syst. Sci..

[31]  Ralph E. Gomory,et al.  Outline of an Algorithm for Integer Solutions to Linear Programs and An Algorithm for the Mixed Integer Problem , 2010, 50 Years of Integer Programming.

[32]  Andrew Chi-Chih Yao,et al.  Informational complexity and the direct sum problem for simultaneous message complexity , 2001, Proceedings 2001 IEEE International Conference on Cluster Computing.

[33]  Toniann Pitassi,et al.  Lower Bounds for Lovász-Schrijver Systems and Beyond Follow from Multiparty Communication Complexity , 2005, ICALP.

[34]  Aaron Potechin,et al.  Tight bounds for monotone switching networks via fourier analysis , 2012, STOC '12.

[35]  Ralph E. Gomory,et al.  An algorithm for integer solutions to linear programs , 1958 .

[36]  André Gronemeier,et al.  Asymptotically Optimal Lower Bounds on the NIH-Multi-Party Information Complexity of the AND-Function and Disjointness , 2009, STACS.

[37]  HierarchyRan Raz,et al.  Separation of the Monotone NC , 1999 .

[38]  Vasek Chvátal,et al.  Edmonds polytopes and a hierarchy of combinatorial problems , 1973, Discret. Math..

[39]  Bala Kalyanasundaram,et al.  The Probabilistic Communication Complexity of Set Intersection , 1992, SIAM J. Discret. Math..

[40]  Yuval Ishai,et al.  Efficient Multi-party Computation over Rings , 2003, EUROCRYPT.

[41]  Alasdair Urquhart,et al.  Formal Languages]: Mathematical Logic--mechanical theorem proving , 2022 .

[42]  Ran Raz,et al.  Monotone circuits for matching require linear depth , 1990, STOC '90.

[43]  László Lovász,et al.  Random Walks on Graphs: A Survey , 1993 .

[44]  Dima Grigoriev,et al.  Linear lower bound on degrees of Positivstellensatz calculus proofs for the parity , 2001, Theor. Comput. Sci..

[45]  Richard Cleve Towards optimal simulations of formulas by bounded-width programs , 1990, STOC '90.

[46]  Alan M. Frieze,et al.  Optimal construction of edge-disjoint paths in random regular graphs , 2000, SODA '99.

[47]  Stephen A. Cook,et al.  An observation on time-storage trade off , 1973, J. Comput. Syst. Sci..

[48]  Warren P. Adams,et al.  A hierarchy of relaxation between the continuous and convex hull representations , 1990 .

[49]  I. Oliveira Unconditional Lower Bounds in Complexity Theory , 2015 .

[50]  David A. Mix Barrington,et al.  Bounded-width polynomial-size branching programs recognize exactly those languages in NC1 , 1986, STOC '86.

[51]  Moses Charikar,et al.  Integrality gaps for Sherali-Adams relaxations , 2009, STOC '09.

[52]  Anna Gál A characterization of span program size and improved lower bounds for monotone span programs , 1998, STOC '98.

[53]  Alexander A. Sherstov The Pattern Matrix Method , 2009, SIAM J. Comput..

[54]  Moni Naor,et al.  A minimal model for secure computation (extended abstract) , 1994, STOC '94.

[55]  Stephen A. Cook,et al.  An Observation on Time-Storage Trade Off , 1974, J. Comput. Syst. Sci..

[56]  Saburo Muroga,et al.  Threshold logic and its applications , 1971 .

[57]  Russell Impagliazzo,et al.  Upper and lower bounds for tree-like cutting planes proofs , 1994, Proceedings Ninth Annual IEEE Symposium on Logic in Computer Science.

[58]  Toniann Pitassi,et al.  The story of set disjointness , 2010, SIGA.

[59]  Peter Frankl,et al.  Complexity classes in communication complexity theory , 1986, 27th Annual Symposium on Foundations of Computer Science (sfcs 1986).

[60]  Toniann Pitassi,et al.  Integrality Gaps of 2-o(1) for Vertex Cover SDPs in the Lov[a-acute]sz--Schrijver Hierarchy , 2010, SIAM J. Comput..

[61]  Alexander A. Razborov,et al.  On the Distributional Complexity of Disjointness , 1992, Theor. Comput. Sci..

[62]  Prabhakar Raghavan,et al.  The electrical resistance of a graph captures its commute and cover times , 2005, computational complexity.

[63]  Nicholas Pippenger CHAPTER 15 – Communication Networks , 1990 .

[64]  L. Asz Random Walks on Graphs: a Survey , 2022 .

[65]  Alexander Schrijver,et al.  Cones of Matrices and Set-Functions and 0-1 Optimization , 1991, SIAM J. Optim..

[66]  M. Murty Ramanujan Graphs , 1965 .

[67]  Avi Wigderson,et al.  Monotone circuits for connectivity require super-logarithmic depth , 1990, STOC '88.

[68]  Ran Raz,et al.  Separation of the Monotone NC Hierarchy , 1999, Comb..

[69]  Jean B. Lasserre,et al.  An Explicit Exact SDP Relaxation for Nonlinear 0-1 Programs , 2001, IPCO.

[70]  Eyal Kushilevitz,et al.  Communication Complexity: Index of Notation , 1996 .

[71]  H. Buhrman,et al.  Complexity measures and decision tree complexity: a survey , 2002, Theor. Comput. Sci..

[72]  Stasys Jukna,et al.  Boolean Function Complexity Advances and Frontiers , 2012, Bull. EATCS.

[73]  Ran Raz,et al.  Probabilistic communication complexity of Boolean relations , 1989, 30th Annual Symposium on Foundations of Computer Science.

[74]  Moni Naor,et al.  A Minimal Model for Secure Computation , 2002 .

[75]  Alan M. Frieze Edge-disjoint paths in expander graphs , 2000, SODA '00.