Correlation-compressed direct-coupling analysis

Learning Ising or Potts models from data has become an important topic in statistical physics and computational biology, with applications to predictions of structural contacts in proteins and othe ...

[1]  R. Zecchina,et al.  Inverse statistical problems: from the inverse Ising problem to data science , 2017, 1702.01522.

[2]  Montgomery Slatkin,et al.  Linkage disequilibrium — understanding the evolutionary past and mapping the medical future , 2008, Nature Reviews Genetics.

[3]  Marcin J. Skwark,et al.  Interacting networks of resistance, virulence and core machinery genes identified by genome-wide epistasis analysis , 2016, bioRxiv.

[4]  E. Aurell,et al.  Improved contact prediction in proteins: using pseudolikelihoods to infer Potts models. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[5]  Yasser Roudi,et al.  Learning with hidden variables , 2015, Current Opinion in Neurobiology.

[6]  Thomas A. Hopf,et al.  Three-Dimensional Structures of Membrane Proteins from Genomic Sequencing , 2012, Cell.

[7]  Magnus Ekeberg,et al.  Fast pseudolikelihood maximization for direct-coupling analysis of protein structure from many homologous amino-acid sequences , 2014, J. Comput. Phys..

[8]  James Y. Zou Analysis of protein-coding genetic variation in 60,706 humans , 2015, Nature.

[9]  Erik van Nimwegen,et al.  Disentangling Direct from Indirect Co-Evolution of Residues in Protein Alignments , 2010, PLoS Comput. Biol..

[10]  Jukka Corander,et al.  Statistical properties of interaction parameter estimates in direct coupling analysis , 2017 .

[11]  Michael Chertkov,et al.  Interaction Screening: Efficient and Sample-Optimal Learning of Ising Models , 2016, NIPS.

[12]  Steven J. M. Jones,et al.  Circos: an information aesthetic for comparative genomics. , 2009, Genome research.

[13]  Martin Weigt,et al.  Large-scale identification of coevolution signals across homo-oligomeric protein interfaces by direct coupling analysis , 2017, Proceedings of the National Academy of Sciences.

[14]  Massimiliano Pontil,et al.  PSICOV: precise structural contact prediction using sparse inverse covariance estimation on large multiple sequence alignments , 2012, Bioinform..

[15]  Andrew J. Hill,et al.  Analysis of protein-coding genetic variation in 60,706 humans , 2015, bioRxiv.

[16]  Georgios A. Pavlopoulos,et al.  Protein structure determination using metagenome sequence data , 2017, Science.

[17]  Ericka Stricklin-Parker,et al.  Ann , 2005 .

[18]  Debora S. Marks,et al.  Quantification of the effect of mutations using a global probability model of natural sequence variation , 2015, 1510.04612.

[19]  R. Monasson,et al.  Small-correlation expansions for the inverse Ising problem , 2008, 0811.3574.

[20]  J. Besag Statistical Analysis of Non-Lattice Data , 1975 .

[21]  Johannes Söding,et al.  Big-data approaches to protein structure prediction , 2017, Science.

[22]  Erik Aurell,et al.  Frontiers in Computational Neuroscience , 2022 .

[23]  J. Hopcroft,et al.  Proceedings of the fifth annual ACM symposium on Theory of computing , 1977 .

[24]  David T. Jones,et al.  MetaPSICOV: combining coevolution methods for accurate prediction of contacts and long range hydrogen bonding in proteins , 2014, Bioinform..

[25]  Antonio-José Almeida,et al.  NAT , 2019, Springer Reference Medizin.

[26]  Carlo Baldassi,et al.  Simultaneous identification of specifically interacting paralogs and interprotein contacts by direct coupling analysis , 2016, Proceedings of the National Academy of Sciences.

[27]  Simona Cocco,et al.  Direct-Coupling Analysis of nucleotide coevolution facilitates RNA secondary and tertiary structure prediction , 2015, Nucleic acids research.

[28]  Michael I. Jordan,et al.  Graphical Models, Exponential Families, and Variational Inference , 2008, Found. Trends Mach. Learn..

[29]  Hilbert J. Kappen,et al.  Efficient Learning in Boltzmann Machines Using Linear Response Theory , 1998, Neural Computation.

[30]  Front , 2020, 2020 Fourth World Conference on Smart Trends in Systems, Security and Sustainability (WorldS4).

[31]  E. Aurell,et al.  Inverse Ising inference using all the data. , 2011, Physical review letters.

[32]  C. Sander,et al.  All-atom 3D structure prediction of transmembrane β-barrel proteins from sequences , 2015, Proceedings of the National Academy of Sciences.

[33]  Frank DiMaio,et al.  Protein structure prediction using Rosetta in CASP12 , 2018, Proteins.

[34]  Michael J. Berry,et al.  Weak pairwise correlations imply strongly correlated network states in a neural population , 2005, Nature.

[35]  Marcin J. Skwark,et al.  Predicting accurate contacts in thousands of Pfam domain families using PconsC3 , 2017, Bioinform..

[36]  C. Sander,et al.  Direct-coupling analysis of residue coevolution captures native contacts across many protein families , 2011, Proceedings of the National Academy of Sciences.

[37]  Marcin J. Skwark,et al.  Improving Contact Prediction along Three Dimensions , 2014, PLoS Comput. Biol..

[38]  Adam J. Riesselman,et al.  3D RNA and Functional Interactions from Evolutionary Couplings , 2015, Cell.

[39]  Jukka Corander,et al.  SuperDCA for genome-wide epistasis analysis , 2017, bioRxiv.

[40]  M. Weigt,et al.  Coevolutionary Landscape Inference and the Context-Dependence of Mutations in Beta-Lactamase TEM-1 , 2015, bioRxiv.

[41]  Peter Sollich,et al.  Inference for dynamics of continuous variables: the extended Plefka expansion with hidden nodes , 2016, 1603.05538.

[42]  Debora S. Marks,et al.  Inferring Pairwise Interactions from Biological Data Using Maximum-Entropy Probability Models , 2015, PLoS Comput. Biol..

[43]  J. Lafferty,et al.  High-dimensional Ising model selection using ℓ1-regularized logistic regression , 2010, 1010.0311.

[44]  S. Kirkpatrick,et al.  Solvable Model of a Spin-Glass , 1975 .

[45]  Peter E. Latham,et al.  Pairwise Maximum Entropy Models for Studying Large Biological Systems: When They Can Work and When They Can't , 2008, PLoS Comput. Biol..

[46]  Malgorzata Kotulska,et al.  Forecasting residue‐residue contact prediction accuracy , 2017, Bioinform..

[47]  Mirco Michel,et al.  Large-scale structure prediction by improved contact predictions and model quality assessment , 2017, bioRxiv.

[48]  Michael Chertkov,et al.  Optimal structure and parameter learning of Ising models , 2016, Science Advances.

[49]  Marcin J. Skwark,et al.  Protein contact prediction from amino acid co-evolution using convolutional networks for graph-valued images , 2016, NIPS.

[50]  C. Ross Found , 1869, The Dental register.

[51]  W. Marsden I and J , 2012 .

[52]  Zhen Li,et al.  Accurate De Novo Prediction of Protein Contact Map by Ultra-Deep Learning Model , 2016, bioRxiv.

[53]  T. Hwa,et al.  Identification of direct residue contacts in protein–protein interaction by message passing , 2009, Proceedings of the National Academy of Sciences.

[54]  H. Cordell Epistasis: what it means, what it doesn't mean, and statistical methods to detect it in humans. , 2002, Human molecular genetics.

[55]  Simona Cocco,et al.  Inverse statistical physics of protein sequences: a key issues review , 2017, Reports on progress in physics. Physical Society.

[56]  J. Berg,et al.  Statistical mechanics of the inverse Ising problem and the optimal objective function , 2016, 1611.04281.