A moving horizon approach to Networked Control system design

This paper presents a control system design strategy for multivariable plants where the controller, sensors and actuators are connected via a digital, data-rate limited, communications channel. In order to minimize bandwidth utilization, a communication constraint is imposed which restricts all transmitted data to belong to a finite set and only permits one plant to be addressed at a time. We emphasize implementation issues and employ moving horizon techniques to deal with both control and measurement quantization issues. We illustrate the methodology by simulations and a laboratory-based pilot-scale study.

[1]  Allen Gersho,et al.  Vector quantization and signal compression , 1991, The Kluwer international series in engineering and computer science.

[2]  D. Bertsekas,et al.  Recursive state estimation for a set-membership description of uncertainty , 1971 .

[3]  Asok Ray,et al.  A Stochastic Regulator for Integrated Communication and Control Systems: Part I—Formulation of Control Law , 1991 .

[4]  D. Delchamps Extracting state information form a quantized output record , 1990 .

[5]  R. Gray,et al.  Dithered Quantizers , 1993, Proceedings. 1991 IEEE International Symposium on Information Theory.

[6]  Y. F. Huang,et al.  On the value of information in system identification - Bounded noise case , 1982, Autom..

[7]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[8]  John G. Proakis,et al.  Digital Communications , 1983 .

[9]  Ian R. Petersen,et al.  Set-valued state estimation via a limited capacity communication channel , 2002, Proceedings of the 41st IEEE Conference on Decision and Control, 2002..

[10]  Roger W. Brockett,et al.  Stabilization of motor networks , 1995, Proceedings of 1995 34th IEEE Conference on Decision and Control.

[11]  Qinghua Zhang,et al.  STATE AND PARAMETER ESTIMATION FOR NONLINEAR SYSTEMS , 2002 .

[12]  E. Walter,et al.  Exact description of feasible parameter sets and minimax estimation , 1994 .

[13]  David Q. Mayne,et al.  Constrained state estimation for nonlinear discrete-time systems: stability and moving horizon approximations , 2003, IEEE Trans. Autom. Control..

[14]  B. Anderson,et al.  Optimal Filtering , 1979, IEEE Transactions on Systems, Man, and Cybernetics.

[15]  J. Baillieul Feedback coding for information-based control: operating near the data-rate limit , 2002, Proceedings of the 41st IEEE Conference on Decision and Control, 2002..

[16]  F. Schweppe Recursive state estimation: Unknown but bounded errors and system inputs , 1967 .

[17]  Jan M. Maciejowski,et al.  Predictive control : with constraints , 2002 .

[18]  D.E. Quevedo,et al.  Design issues arising in a networked control system architecture , 2004, Proceedings of the 2004 IEEE International Conference on Control Applications, 2004..

[19]  A. Jazwinski Stochastic Processes and Filtering Theory , 1970 .

[20]  Orla Feely,et al.  A tutorial introduction to non‐linear dynamics and chaos and their application to sigma–delta modulators , 1997 .

[21]  L. Meier Estimation and control with quantized measurements , 1971 .

[22]  A. Sangiovanni-Vincentelli,et al.  Numerically efficient control of systems with communication constraints , 2002, Proceedings of the 41st IEEE Conference on Decision and Control, 2002..

[23]  W. K. Hastings,et al.  Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .

[24]  D. Delchamps Stabilizing a linear system with quantized state feedback , 1990 .

[25]  D.E. Quevedo,et al.  Minimizing down-link traffic in networked control systems via optimal control techniques , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[26]  M. Morari,et al.  Moving horizon estimation for hybrid systems , 2002, Proceedings of the 2000 American Control Conference. ACC (IEEE Cat. No.00CH36334).

[27]  Antonio Bicchi,et al.  On the reachability of quantized control systems , 2002, IEEE Trans. Autom. Control..

[28]  Bruce A. Francis,et al.  Limited Data Rate in Control Systems with Networks , 2002 .

[29]  David Q. Mayne,et al.  Constrained model predictive control: Stability and optimality , 2000, Autom..

[30]  Kristi A. Morgansen,et al.  Limited communication control , 1999 .

[31]  Graham C. Goodwin,et al.  Adaptive filtering prediction and control , 1984 .

[32]  Umit Ozguner,et al.  Closed-loop control of systems over a communications network with queues , 1995 .

[33]  Antonio Vicino,et al.  Optimal estimation theory for dynamic systems with set membership uncertainty: An overview , 1991, Autom..

[34]  Johan Nilsson,et al.  Stochastic Analysis and Control of Real-Time Systems with Random Time Delays , 1996 .

[35]  Graham C. Goodwin,et al.  A ROLLING HORIZON STATE ESTIMATOR WITH CONSTRAINT HORIZON ONE , 2002 .

[36]  G. Goodwin,et al.  Finite constraint set receding horizon quadratic control , 2004 .

[37]  Eric Walter,et al.  Guaranteed linear and nonlinear parameter estimation from bounded-error data: A survey , 1993, 1993 IEEE International Symposium on Circuits and Systems.

[38]  Linda Bushnell,et al.  Networks and control [Guest Editorial] , 2001 .

[39]  Behnam Bavarian,et al.  Special Section on Neural Networks for Systems and Control , 2004 .

[40]  Graham C. Goodwin,et al.  Moving horizon Monte Carlo state estimation for linear systems with output quantization , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[41]  David L. Neuhoff,et al.  Quantization , 2022, IEEE Trans. Inf. Theory.

[42]  Eduardo Sontag,et al.  Linear systems with sign-observations , 1993 .

[43]  G. Goodwin,et al.  Set-valued observers for constrained state estimation of discrete-time systems with quantized measurements , 2004, 2004 5th Asian Control Conference (IEEE Cat. No.04EX904).