How Gibbs distributions may naturally arise from synaptic adaptation mechanisms

[1]  廣瀬雄一,et al.  Neuroscience , 2019, Workplace Attachments.

[2]  Bruno Cessac,et al.  Parametric estimation of spike train statistics , 2009, BMC Neuroscience.

[3]  Bruno Cessac,et al.  Back-engineering of spiking neural networks parameters , 2009, BMC Neuroscience.

[4]  T. Viéville,et al.  How Gibbs Distributions May Naturally Arise from Synaptic Adaptation Mechanisms. A Model-Based Argumentation , 2008, 0812.3899.

[5]  E. Seneta Non-negative Matrices and Markov Chains , 2008 .

[6]  Shun-ichi Amari,et al.  Discrimination with Spike Times and ISI Distributions , 2008, Neural Computation.

[7]  W. Bialek,et al.  Combinatorial coding in neural populations , 2008, 0803.3837.

[8]  Jonathan Touboul,et al.  Bifurcation Analysis of a General Class of Nonlinear Integrate-and-Fire Neurons , 2008, SIAM J. Appl. Math..

[9]  Yun Gao,et al.  Estimating the Entropy of Binary Time Series: Methodology, Some Theory and a Simulation Study , 2008, Entropy.

[10]  B. Cessac A discrete time neural network model with spiking neurons , 2007, Journal of mathematical biology.

[11]  Bruno Cessac,et al.  A Mathematical Analysis of the Effects of Hebbian Learning Rules on the Dynamics and Structure of Discrete-Time Random Recurrent Neural Networks , 2007, Neural Computation.

[12]  A. Georgopoulos,et al.  Mapping of the preferred direction in the motor cortex , 2007, Proceedings of the National Academy of Sciences.

[13]  Bruno Cessac,et al.  Effects of Hebbian learning on the dynamics and structure of random networks with inhibitory and excitatory neurons , 2007, Journal of Physiology-Paris.

[14]  Jean-Pascal Pfister,et al.  Optimality Model of Unsupervised Spike-Timing-Dependent Plasticity: Synaptic Memory and Weight Distribution , 2007, Neural Computation.

[15]  Sander M. Bohte,et al.  Reducing the Variability of Neural Responses: A Computational Theory of Spike-Timing-Dependent Plasticity , 2007, Neural Computation.

[16]  Carson C. Chow,et al.  Stochastic Dynamics of a Finite-Size Spiking Neural Network , 2007, Neural Computation.

[17]  Bruno Cessac,et al.  On Dynamics of Integrate-and-Fire Neural Networks with Adaptive Conductances , 2007 .

[18]  Michael J. Berry,et al.  Ising models for networks of real neurons , 2006, q-bio/0611072.

[19]  B. Cessac Does the complex susceptibility of the Hénon map have a pole in the upper-half plane? A numerical investigation , 2006, nlin/0609039.

[20]  Bruno Cessac,et al.  From neuron to neural networks dynamics , 2006, ArXiv.

[21]  M. Diamond,et al.  Deciphering the Spike Train of a Sensory Neuron: Counts and Temporal Patterns in the Rat Whisker Pathway , 2006, The Journal of Neuroscience.

[22]  Alain Destexhe,et al.  Analytical Integrate-and-Fire Neuron Models with Conductance-Based Dynamics for Event-Driven Simulation Strategies , 2006, Neural Computation.

[23]  Michael J. Berry,et al.  Weak pairwise correlations imply strongly correlated network states in a neural population , 2005, Nature.

[24]  Hédi Soula,et al.  Spontaneous Dynamics of Asymmetric Random Recurrent Spiking Neural Networks , 2004, Neural Computation.

[25]  Zou Quan,et al.  Modèles computationnels de la plasticité impulsionnelle : synapses, neurones et circuits , 2006 .

[26]  E. Adrian,et al.  The impulses produced by sensory nerve-endings: Part II. The response of a Single End-Organ. , 2006, The Journal of physiology.

[27]  Wulfram Gerstner,et al.  Integrate-and-Fire models with adaptation are good enough , 2005, NIPS.

[28]  Michael J. Black,et al.  Modeling Neural Population Spiking Activity with Gibbs Distributions , 2005, NIPS.

[29]  Wulfram Gerstner,et al.  Adaptive exponential integrate-and-fire model as an effective description of neuronal activity. , 2005, Journal of neurophysiology.

[30]  W. Gerstner,et al.  Generalized Bienenstock-Cooper-Munro rule for spiking neurons that maximizes information transmission. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[31]  Hédi Soula,et al.  Dynamique et plasticité dans les réseaux de neurones à impulsions : étude du couplage temporel réseau / agent / environnement , 2005 .

[32]  Eugene M. Izhikevich,et al.  Which model to use for cortical spiking neurons? , 2004, IEEE Transactions on Neural Networks.

[33]  Nathan Intrator,et al.  Theory of Cortical Plasticity , 2004 .

[34]  Matthew A. Wilson,et al.  Dynamic Analyses of Information Encoding in Neural Ensembles , 2004, Neural Computation.

[35]  B. Cessac,et al.  Self-Organized Criticality and Thermodynamic Formalism , 2002, nlin/0209038.

[36]  John P. Miller,et al.  Temporal encoding in nervous systems: A rigorous definition , 1995, Journal of Computational Neuroscience.

[37]  C. Malsburg Self-organization of orientation sensitive cells in the striate cortex , 2004, Kybernetik.

[38]  Don H. Johnson,et al.  Neural Population Structures and Consequences for Neural Coding , 2004, Journal of Computational Neuroscience.

[39]  Peter Dayan,et al.  Plasticity Kernels and Temporal Statistics , 2003, NIPS.

[40]  Eugene M. Izhikevich,et al.  Simple model of spiking neurons , 2003, IEEE Trans. Neural Networks.

[41]  Eugene M. Izhikevich,et al.  Relating STDP to BCM , 2003, Neural Computation.

[42]  Gal Chechik,et al.  Spike-Timing-Dependent Plasticity and Relevant Mutual Information Maximization , 2003, Neural Computation.

[43]  Sheila Nirenberg,et al.  Decoding neuronal spike trains: How important are correlations? , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[44]  Alexa Riehle,et al.  Spike synchronization and firing rate in a population of motor cortical neurons in relation to movement direction and reaction time , 2003, Biological Cybernetics.

[45]  Wulfram Gerstner,et al.  Mathematical formulations of Hebbian learning , 2002, Biological Cybernetics.

[46]  Wulfram Gerstner,et al.  Spiking Neuron Models , 2002 .

[47]  Rajesh P. N. Rao,et al.  Spike-Timing-Dependent Hebbian Plasticity as Temporal Difference Learning , 2001, Neural Computation.

[48]  Arnaud Delorme,et al.  Networks of integrate-and-fire neuron using rank order coding A: How to implement spike time dependent Hebbian plasticity , 2001, Neurocomputing.

[49]  Arnaud Delorme,et al.  Networks of integrate-and-fire neurons using Rank Order Coding B: Spike timing dependent plasticity and emergence of orientation selectivity , 2001, Neurocomputing.

[50]  G. Bi,et al.  Synaptic modification by correlated activity: Hebb's postulate revisited. , 2001, Annual review of neuroscience.

[51]  Peter Dayan,et al.  Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems , 2001 .

[52]  Don H. Johnson,et al.  Toward a theory of information processing , 2000, 2000 IEEE International Symposium on Information Theory (Cat. No.00CH37060).

[53]  B. Cessac,et al.  What Can One Learn About Self-Organized Criticality from Dynamical Systems Theory? , 1999, cond-mat/9912081.

[54]  Rajesh P. N. Rao,et al.  Predictive Sequence Learning in Recurrent Neocortical Circuits , 1999, NIPS.

[55]  R. Nicoll,et al.  Long-term potentiation--a decade of progress? , 1999, Science.

[56]  A. Riehle,et al.  Precise spike synchronization in monkey motor cortex involved in preparation for movement , 1999, Experimental Brain Research.

[57]  D. Ruelle Smooth Dynamics and New Theoretical Ideas in Nonequilibrium Statistical Mechanics , 1998, chao-dyn/9812032.

[58]  Bruno Cessac,et al.  Self-organization and dynamics reduction in recurrent networks: stimulus presentation and learning , 1998, Neural Networks.

[59]  G. Keller Equilibrium States in Ergodic Theory , 1998 .

[60]  R. Lima,et al.  Relative Entropy and Identification of Gibbs Measures in Dynamical Systems , 1998 .

[61]  J. Zukas Introduction to the Modern Theory of Dynamical Systems , 1998 .

[62]  Francis Comets,et al.  Detecting phase transition for Gibbs measures , 1997 .

[63]  D. Johnston,et al.  Regulation of Synaptic Efficacy by Coincidence of Postsynaptic APs and EPSPs , 1997 .

[64]  William Bialek,et al.  Spikes: Exploring the Neural Code , 1996 .

[65]  P. Collet,et al.  Maximum Likelihood and Minimum Entropy Identification of Grammars , 1995, ArXiv.

[66]  Y. Klimontovich Thermodynamics of Chaotic Systems — An introduction , 1994 .

[67]  J. Guckenheimer,et al.  Bifurcation of the Hodgkin and Huxley equations: A new twist , 1993 .

[68]  SM Dudek,et al.  Bidirectional long-term modification of synaptic effectiveness in the adult and immature hippocampus , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[69]  W. Singer,et al.  Different voltage-dependent thresholds for inducing long-term depression and long-term potentiation in slices of rat visual cortex , 1990, Nature.

[70]  W. Parry,et al.  Zeta functions and the periodic orbit structure of hyperbolic dynamics , 1990 .

[71]  F. Gantmakher,et al.  Théorie des matrices , 1990 .

[72]  A. Hodgkin,et al.  A quantitative description of membrane current and its application to conduction and excitation in nerve , 1990, Bulletin of mathematical biology.

[73]  K. Miller,et al.  Ocular dominance column development: analysis and simulation. , 1989, Science.

[74]  D. Amit Modelling Brain Function: The World of Attractor Neural Networks , 1989 .

[75]  Morris W. Hirsch,et al.  Convergent activation dynamics in continuous time networks , 1989, Neural Networks.

[76]  Chuanshu Ji,et al.  Estimating functionals of one-dimensional Gibbs states , 1989 .

[77]  W. Levy,et al.  Temporal contiguity requirements for long-term associative potentiation/depression in the hippocampus , 1983, Neuroscience.

[78]  A P Georgopoulos,et al.  On the relations between the direction of two-dimensional arm movements and cell discharge in primate motor cortex , 1982, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[79]  E. Bienenstock,et al.  Theory for the development of neuron selectivity: orientation specificity and binocular interaction in visual cortex , 1982, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[80]  D. Mayer,et al.  The Ruelle-Araki Transfer Operator in Classical Statistical Mechanics , 1980 .

[81]  J. Ko Sensory discrimination: neural processes preceding discrimination decision. , 1980 .

[82]  K. O. Johnson,et al.  Sensory discrimination: neural processes preceding discrimination decision. , 1980, Journal of neurophysiology.

[83]  R. Bowen Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms , 1975 .

[84]  T. Bliss,et al.  Long‐lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path , 1973, The Journal of physiology.

[85]  T. Bliss,et al.  Long‐lasting potentiation of synaptic transmission in the dentate area of the unanaesthetized rabbit following stimulation of the perforant path , 1973, The Journal of physiology.

[86]  S. Yoshizawa,et al.  An Active Pulse Transmission Line Simulating Nerve Axon , 1962, Proceedings of the IRE.

[87]  E. Jaynes Information Theory and Statistical Mechanics , 1957 .

[88]  R. FitzHugh Mathematical models of threshold phenomena in the nerve membrane , 1955 .

[89]  J. Knott The organization of behavior: A neuropsychological theory , 1951 .

[90]  F. Attneave,et al.  The Organization of Behavior: A Neuropsychological Theory , 1949 .

[91]  E. Adrian,et al.  The impulses produced by sensory nerve‐endings , 1926 .