Nonlinear adaptive switching control for a class of non-affine nonlinear systems

Abstract An improved nonlinear adaptive switching control method is presented to relax the assumption on the higher order nonlinear terms of a class of discrete-time non-affine nonlinear systems. The proposed control strategy is composed of a linear adaptive controller, a neural network (NN) based nonlinear adaptive controller and a switching mechanism. An incremental model is derived to represent the considered system and an improved robust adaptive law is chosen to update the parameters of the linear adaptive controller. A new performance criterion of the switching mechanism is designed to select the proper controller. Using this control scheme, all the signals in the system are proved to be bounded. Numerical examples verify the effectiveness of the proposed algorithm.

[1]  Giorgio Battistelli,et al.  Multi-model unfalsified adaptive switching supervisory control , 2010, Autom..

[2]  Kumpati S. Narendra,et al.  Nonlinear adaptive control using neural networks and multiple models , 2001, Autom..

[3]  Graham C. Goodwin,et al.  Adaptive filtering prediction and control , 1984 .

[4]  Kumpati S. Narendra,et al.  Issues in the application of neural networks for tracking based on inverse control , 1999, IEEE Trans. Autom. Control..

[5]  Kumpati S. Narendra,et al.  Adaptive control using multiple models , 1997, IEEE Trans. Autom. Control..

[6]  Hassan K. Khalil,et al.  High-gain observers in the presence of measurement noise: A switched-gain approach , 2009, Autom..

[7]  Debasish Chatterjee,et al.  Input-to-state stability of switched systems and switching adaptive control , 2007, Autom..

[8]  M. Kemal Ciliz,et al.  Indirect adaptive control of non-linear systems using multiple identification models and switching , 2008, Int. J. Control.

[9]  Hong Wang,et al.  A direct adaptive neural-network control for unknown nonlinear systems and its application , 1998, IEEE Trans. Neural Networks.

[10]  Tianyou Chai,et al.  Indirect self-tuning control using multiple models for non-affine nonlinear systems , 2011, Int. J. Control.

[11]  A. Morse Supervisory control of families of linear set-point controllers Part I. Exact matching , 1996, IEEE Trans. Autom. Control..

[12]  João Pedro Hespanha,et al.  Supervision of integral-input-to-state stabilizing controllers , 2002, Autom..

[13]  Frank L. Lewis,et al.  2009 Special Issue: Neural network approach to continuous-time direct adaptive optimal control for partially unknown nonlinear systems , 2009 .

[14]  Kumpati S. Narendra,et al.  Adaptive control using multiple models, switching and tuning , 2003 .

[15]  Tianyou Chai,et al.  Nonlinear multivariable adaptive control using multiple models and neural networks , 2007, Autom..

[16]  Naira Hovakimyan,et al.  Neural Network Adaptive Control for a Class of Nonlinear Uncertain Dynamical Systems With Asymptotic Stability Guarantees , 2008, IEEE Transactions on Neural Networks.

[17]  S. Shankar Sastry,et al.  Global stability proofs for continuous-time indirect adaptive control schemes , 1987 .

[18]  Kumpati S. Narendra,et al.  Adaptation and learning using multiple models, switching, and tuning , 1995 .

[19]  Daniel Liberzon,et al.  Finite data-rate feedback stabilization of switched and hybrid linear systems , 2014, Autom..

[20]  Ahmet Cezayirli,et al.  Increased transient performance for the adaptive control of feedback linearizable systems using multiple models , 2006 .

[21]  Kok Kiong Tan,et al.  Robust self-tuning PID controller for nonlinear systems , 2002 .

[22]  A. Paul,et al.  Cost detectability and stability of adaptive control systems , 2007 .

[23]  Giorgio Battistelli,et al.  Model-Free Adaptive Switching Control of Time-Varying Plants , 2013, IEEE Transactions on Automatic Control.

[24]  Kumpati S. Narendra,et al.  Identification and control of a nonlinear discrete-time system based on its linearization: a unified framework , 2004, IEEE Transactions on Neural Networks.

[25]  Shuzhi Sam Ge,et al.  Adaptive Neural Network Tracking Control of MIMO Nonlinear Systems With Unknown Dead Zones and Control Directions , 2009, IEEE Transactions on Neural Networks.

[26]  Tor Arne Johansen,et al.  Improved transient performance of nonlinear adaptive backstepping using estimator resetting based on multiple models , 2002, IEEE Trans. Autom. Control..

[27]  A. Cezayirli,et al.  Transient performance enhancement of direct adaptive control of nonlinear systems using multiple models and switching , 2007 .

[28]  Dan Wang,et al.  Neural network‐based adaptive dynamic surface control of uncertain nonlinear pure‐feedback systems , 2011 .

[29]  Kumpati S. Narendra,et al.  Adaptive control of discrete-time systems using multiple models , 2000, IEEE Trans. Autom. Control..

[30]  Shuzhi Sam Ge,et al.  Robust Adaptive Neural Network Control for a Class of Uncertain MIMO Nonlinear Systems With Input Nonlinearities , 2010, IEEE Transactions on Neural Networks.

[31]  Michael G. Safonov,et al.  Safe Adaptive Switching Control: Stability and Convergence , 2008, IEEE Transactions on Automatic Control.

[32]  Daniel Liberzon,et al.  Supervisory Control of Uncertain Linear Time-Varying Systems , 2011, IEEE Transactions on Automatic Control.

[33]  Hassan Zargarzadeh,et al.  Robust optimal control of uncertain nonaffine MIMO nonlinear discrete‐time systems with application to HCCI engines , 2012 .

[34]  Xin Wang,et al.  Multiple Model Adaptive Control for a Class of Linear-Bounded Nonlinear Systems , 2015, IEEE Transactions on Automatic Control.

[35]  Philippe de Larminat On the stabilizability condition in indirect adaptive control , 1984, Autom..

[36]  Tairen Sun,et al.  Robust adaptive neural network control for environmental boundary tracking by mobile robots , 2013 .

[37]  Edoardo Mosca,et al.  Multiple Model Adaptive Mixing Control: The Discrete-Time Case , 2012, IEEE Transactions on Automatic Control.