Is there a characteristic length of a rigid-body displacement?☆

The quest for a norm of a rigid-body displacement led to the idea of approximating the displacement by a rotation in a higher-dimensional space. Recently, this approximation has been attempted using the singular value and the polar decompositions of the homogeneous transformation matrix representing the displacement. This paper is an attempt to shed light on the question at the title of the paper. It is shown here that the singular-value decomposition is not needed to derive the approximation error, the polar decomposition of the homogeneous transformation matrix being sufficient. We show, moreover, that the approximation error is (a) a function solely of the translation part of the displacement and (b) a monotonically decreasing function of the normalizing length, termed here the characteristic length. Hence, the approximation does not have a minimum that would allow us to define naturally the characteristic length. While such a natural definition is not possible, we propose here a heuristic approach to engineer such a length.

[1]  Calin Belta,et al.  An SVD-based projection method for interpolation on SE(3) , 2002, IEEE Trans. Robotics Autom..

[2]  J. M. Selig Geometric Fundamentals of Robotics , 2004, Monographs in Computer Science.

[3]  Andrew P. Murray,et al.  SVD and PD Based Projection Metrics on SE(n) , 2004 .

[4]  B. Roth,et al.  Motion Synthesis Using Kinematic Mappings , 1983 .

[5]  C. Truesdell,et al.  The Classical Field Theories , 1960 .

[6]  J. Michael McCarthy,et al.  A metric for spatial displacement using biquaternions on SO(4) , 1996, Proceedings of IEEE International Conference on Robotics and Automation.

[7]  Jadran Lenarčič,et al.  Advances in Robot Kinematics , 2000 .

[8]  J. Meixner,et al.  S. Flügge, Herausgeber: Handbuch der Physik, Band III/3: Die nicht‐linearen Feldtheorien der Mechanik. Von C. Truesdell und W. Noll. Springer‐Verlag, Berlin/Heidelberg/New York 1965. VIII/602 Seiten. Preis: 198,‐ DM , 1967, Berichte der Bunsengesellschaft für physikalische Chemie.

[9]  J. Duffy,et al.  On the Metrics of Rigid Body Displacements for Infinite and Finite Bodies , 1995 .

[10]  K. C. Gupta,et al.  Measures of Positional Error for a Rigid Body , 1997 .

[11]  P. Larochelle,et al.  Approximating Spatial Locations With Spherical Orientations for Spherical Mechanism Design , 2000 .

[12]  P. Larochelle,et al.  Planar Motion Synthesis Using an Approximate Bi-Invariant Metric , 1995 .

[13]  Jorge Angeles,et al.  Fundamentals of Robotic Mechanical Systems: Theory, Methods, and Algorithms , 1995 .

[14]  Vijay Kumar,et al.  Metrics and Connections for Rigid-Body Kinematics , 1999, Int. J. Robotics Res..