Kinematics and Workspace Analysis of Protein Based Nano-Actuators

Kinematic and workspace analyses are performed to predict the performance of a new nanoscale biomolecular motor: The Viral Protein Linear (VPL) Motor. The motor is based on a conformational change observed in a family of viral envelope proteins when subjected to a changing pH environment. The conformational change produces a motion of about 10 nm, making the VPL a basic linear actuator, which can be further interfaced with other organic/inorganic nanoscale components such as DNA actuators and carbon nanotubes. This paper presents the principle of operation of the VPL motor and the development of direct and inverse kinematic models for workspace analysis. Preliminary results obtained from the developed computational tools are presented.

[1]  Adrian A Canutescu,et al.  Cyclic coordinate descent: A robotics algorithm for protein loop closure , 2003, Protein science : a publication of the Protein Society.

[2]  P. S. Kim,et al.  A spring-loaded mechanism for the conformational change of influenza hemagglutinin , 1993, Cell.

[3]  Dinesh Manocha,et al.  Conformational analysis of molecular chains using nano-kinematics , 1995, Comput. Appl. Biosci..

[4]  B. D. Coleman,et al.  Elastic stability of DNA configurations. I. General theory. , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[5]  N. Seeman,et al.  Emulating biology: Building nanostructures from the bottom up , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[6]  Lydia E. Kavraki,et al.  A randomized kinematics-based approach to pharmacophore-constrained conformational search and database screening , 2000, J. Comput. Chem..

[7]  Michelle D. Wang,et al.  Force and velocity measured for single molecules of RNA polymerase. , 1998, Science.

[8]  Kazem Kazerounian,et al.  From Mechanisms and Robotics to Protein Conformation and Drug Design , 2004 .

[9]  Mark J. Schnitzer,et al.  Kinesin hydrolyses one ATP per 8-nm step , 1997, Nature.

[10]  L. Mahadevan,et al.  Motility powered by supramolecular springs and ratchets. , 2000, Science.

[11]  N. Seeman DNA nanotechnology: novel DNA constructions. , 1998, Annual review of biophysics and biomolecular structure.

[12]  Gareth Jones,et al.  Further Development of a Genetic Algorithm for Ligand Docking and Its Application to Screening Combinatorial Libraries , 1999 .

[13]  Lydia E. Kavraki,et al.  Computational Approaches to Drug Design , 1999, Algorithmica.

[14]  Peter Willett,et al.  Graph-Theoretic Techniques for Macromolecular Docking , 2000, J. Chem. Inf. Comput. Sci..

[15]  G. Chirikjian,et al.  Efficient generation of feasible pathways for protein conformational transitions. , 2002, Biophysical journal.

[16]  Toshio Yanagida,et al.  Dynein arms are oscillating force generators , 1998, Nature.

[17]  R. Lamb,et al.  Structural basis for paramyxovirus-mediated membrane fusion. , 1999, Molecular cell.

[18]  S. King The dynein microtubule motor. , 2000, Biochimica et biophysica acta.

[19]  A. Gronenborn,et al.  Three‐dimensional solution structure of the 44 kDa ectodomain of SIV gp41 , 1998, The EMBO journal.

[20]  S. Block,et al.  Kinesin: What Gives? , 1998, Cell.

[21]  R. Center,et al.  Crystal structure of human T cell leukemia virus type 1 gp21 ectodomain crystallized as a maltose-binding protein chimera reveals structural evolution of retroviral transmembrane proteins. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[22]  N. Seeman,et al.  A nanomechanical device based on the B–Z transition of DNA , 1999, Nature.

[23]  Mircea Badescu,et al.  New Performance Indices and Workspace Analysis of Reconfigurable Hyper-Redundant Robotic Arms , 2004, Int. J. Robotics Res..

[24]  N. Seeman,et al.  A robust DNA mechanical device controlled by hybridization topology , 2002, Nature.

[25]  K Schulten,et al.  VMD: visual molecular dynamics. , 1996, Journal of molecular graphics.

[26]  J. Sellers,et al.  Myosins: a diverse superfamily. , 2000, Biochimica et biophysica acta.

[27]  James A. Spudich,et al.  How molecular motors work , 1994, Nature.

[28]  W. C. Still,et al.  The multiple minimum problem in molecular modeling. Tree searching internal coordinate conformational space , 1988 .

[29]  Carlo D. Montemagno,et al.  Constructing nanomechanical devices powered by biomolecular motors , 1999 .

[30]  Andrew Smellie,et al.  Analysis of Conformational Coverage, 1. Validation and Estimation of Coverage , 1995, J. Chem. Inf. Comput. Sci..

[31]  W. Weissenhorn,et al.  The central structural feature of the membrane fusion protein subunit from the Ebola virus glycoprotein is a long triple-stranded coiled coil. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[32]  Lydia E. Kavraki,et al.  Molecular docking: a problem with thousands of degrees of freedom , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[33]  I. Wilson,et al.  Changes in the conformation of influenza virus hemagglutinin at the pH optimum of virus-mediated membrane fusion. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[34]  T. N. Bhat,et al.  The Protein Data Bank , 2000, Nucleic Acids Res..

[35]  P S Kim,et al.  Influenza hemagglutinin is spring-loaded by a metastable native conformation. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[36]  S. Harrison,et al.  Structural basis for membrane fusion by enveloped viruses. , 1999, Molecular membrane biology.

[37]  Toshio Yanagida,et al.  A single myosin head moves along an actin filament with regular steps of 5.3 nanometres , 1999, Nature.

[38]  H. Berg,et al.  Dynamic properties of bacterial flagellar motors , 1974, Nature.

[39]  C. Schalley,et al.  On the way to rotaxane-based molecular motors: studies in molecular mobility and topological chirality. , 2001, Accounts of chemical research.

[40]  Gaurav Sharma,et al.  Computational studies of viral protein nano-actuators , 2004 .

[41]  Lydia E. Kavraki,et al.  Geometric Manipulation of Flexible Ligands , 1996, WACG.

[42]  J. Denavit,et al.  A kinematic notation for lower pair mechanisms based on matrices , 1955 .

[43]  T. Müller,et al.  ATP-independent contractile proteins from plants , 2003, Nature materials.

[44]  Mircea Badescu,et al.  WORKSPACE ANALYSIS OF RECONFIGURABLE ROBOTIC ARMS USING PARALLEL PLATFORMS AS MODULES , 2003 .

[45]  Ming Zhang,et al.  A New Method for Fast and Accurate Derivation of Molecular Conformations , 2002, J. Chem. Inf. Comput. Sci..

[46]  H. Erickson,et al.  Stretching Single Protein Molecules: Titin Is a Weird Spring , 1997, Science.

[47]  Chih-Cheng Chen,et al.  A combined optimization method for solving the inverse kinematics problems of mechanical manipulators , 1991, IEEE Trans. Robotics Autom..

[48]  Deborah Fass,et al.  Core Structure of gp41 from the HIV Envelope Glycoprotein , 1997, Cell.

[49]  I. Wilson,et al.  Structure of the haemagglutinin membrane glycoprotein of influenza virus at 3 Å resolution , 1981, Nature.

[50]  A. Turberfield,et al.  A DNA-fuelled molecular machine made of DNA , 2022 .

[51]  David Keller,et al.  Mechanical, electrical, and chemical manipulation of single DNA molecules , 1992 .

[52]  Bernard Mourrain,et al.  Computer Algebra Methods for Studying and Computing Molecular Conformations , 1999, Algorithmica.

[53]  G M Whitesides,et al.  Hemagglutinins from two influenza virus variants bind to sialic acid derivatives with millimolar dissociation constants: a 500-MHz proton nuclear magnetic resonance study. , 1989, Biochemistry.

[54]  G. Chirikjian,et al.  Elastic models of conformational transitions in macromolecules. , 2002, Journal of molecular graphics & modelling.

[55]  J(胡钧) Hu,et al.  Artificial DNA patterns by mechanical nanomanipulation , 2002 .