Fractional Edge Cover Number of Model RB
暂无分享,去创建一个
[1] Dániel Marx,et al. Tractable Hypergraph Properties for Constraint Satisfaction and Conjunctive Queries , 2009, JACM.
[2] Ke Xu,et al. Random constraint satisfaction: Easy generation of hard (satisfiable) instances , 2007, Artif. Intell..
[3] Hector J. Levesque,et al. Generating Hard Satisfiability Problems , 1996, Artif. Intell..
[4] Ton Kloks. Treewidth, Computations and Approximations , 1994, Lecture Notes in Computer Science.
[5] Wei Li,et al. Exact Phase Transitions in Random Constraint Satisfaction Problems , 2000, J. Artif. Intell. Res..
[6] Yun Fan,et al. On the phase transitions of random k-constraint satisfaction problems , 2011, Artif. Intell..
[7] J. Culberson,et al. Consistency and Random Constraint Satisfaction Models , 2007, J. Artif. Intell. Res..
[8] Wei Xu,et al. Solution space structure of random constraint satisfaction problems with growing domains , 2015, ArXiv.
[9] Yong Gao,et al. Treewidth of Erdős-Rényi random graphs, random intersection graphs, and scale-free random graphs , 2009, Discret. Appl. Math..
[10] Béla Bollobás,et al. Random Graphs , 1985 .
[11] Hector J. Levesque,et al. Hard and Easy Distributions of SAT Problems , 1992, AAAI.
[12] Wei Li,et al. Many hard examples in exact phase transitions , 2003, Theor. Comput. Sci..
[13] Ke Xu,et al. A Note on Treewidth in Random Graphs , 2011, COCOA.
[14] Olivier Dubois,et al. Typical random 3-SAT formulae and the satisfiability threshold , 2000, SODA '00.
[15] Dániel Marx,et al. Constraint solving via fractional edge covers , 2006, SODA '06.
[16] M. Mézard,et al. Analytic and Algorithmic Solution of Random Satisfiability Problems , 2002, Science.
[17] Peter C. Cheeseman,et al. Where the Really Hard Problems Are , 1991, IJCAI.
[18] Yun Fan,et al. A general model and thresholds for random constraint satisfaction problems , 2012, Artif. Intell..
[19] Wei Jiang,et al. Two Hardness Results on Feedback Vertex Sets , 2011, FAW-AAIM.
[20] Kaile Su,et al. Large Hinge Width on Sparse Random Hypergraphs , 2011, IJCAI.
[21] Yong Gao,et al. On the Threshold of Having a Linear Treewidth in Random Graphs , 2006, COCOON.
[22] Georg Gottlob,et al. Hypertree width and related hypergraph invariants , 2007, Eur. J. Comb..
[23] Sang-il Oum,et al. Rank‐width of random graphs , 2010, J. Graph Theory.
[24] Yong Gao,et al. Phase Transition of Tractability in Constraint Satisfaction and Bayesian Network Inference , 2002, UAI.
[25] David G. Mitchell,et al. Finding hard instances of the satisfiability problem: A survey , 1996, Satisfiability Problem: Theory and Applications.
[26] Ke Xu,et al. Analytical and belief-propagation studies of random constraint satisfaction problems with growing domains. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.
[27] Ke Xu,et al. Large hypertree width for sparse random hypergraphs , 2015, J. Comb. Optim..