Fractional Edge Cover Number of Model RB

Model RB is a random constraint satisfaction problem with a growing domain size, which exhibits exact phase transition phenomena. Many hard instances with planted solutions can be generated via Model RB, to be used as benchmarks for algorithmic competitions and researches. In the past, some structural parameters of constraint hypergraphs are analyzed to show hardness of Model RB, such as hinge width, decycling number, treewidth, and hypertree width. In this paper, one more structural parameter of constraint hypergraphs of Model RB, namely the fractional edge cover number, is analyzed. We show upper and lower bounds on the fractional edge cover number of Model RB. In particular, the fractional edge cover number of Model RB is shown to be asymptotically linear in the number of variables, like hinge width, decycling number, treewidth and hypertree width. These results together provide further evidences on the hardness of Model RB.

[1]  Dániel Marx,et al.  Tractable Hypergraph Properties for Constraint Satisfaction and Conjunctive Queries , 2009, JACM.

[2]  Ke Xu,et al.  Random constraint satisfaction: Easy generation of hard (satisfiable) instances , 2007, Artif. Intell..

[3]  Hector J. Levesque,et al.  Generating Hard Satisfiability Problems , 1996, Artif. Intell..

[4]  Ton Kloks Treewidth, Computations and Approximations , 1994, Lecture Notes in Computer Science.

[5]  Wei Li,et al.  Exact Phase Transitions in Random Constraint Satisfaction Problems , 2000, J. Artif. Intell. Res..

[6]  Yun Fan,et al.  On the phase transitions of random k-constraint satisfaction problems , 2011, Artif. Intell..

[7]  J. Culberson,et al.  Consistency and Random Constraint Satisfaction Models , 2007, J. Artif. Intell. Res..

[8]  Wei Xu,et al.  Solution space structure of random constraint satisfaction problems with growing domains , 2015, ArXiv.

[9]  Yong Gao,et al.  Treewidth of Erdős-Rényi random graphs, random intersection graphs, and scale-free random graphs , 2009, Discret. Appl. Math..

[10]  Béla Bollobás,et al.  Random Graphs , 1985 .

[11]  Hector J. Levesque,et al.  Hard and Easy Distributions of SAT Problems , 1992, AAAI.

[12]  Wei Li,et al.  Many hard examples in exact phase transitions , 2003, Theor. Comput. Sci..

[13]  Ke Xu,et al.  A Note on Treewidth in Random Graphs , 2011, COCOA.

[14]  Olivier Dubois,et al.  Typical random 3-SAT formulae and the satisfiability threshold , 2000, SODA '00.

[15]  Dániel Marx,et al.  Constraint solving via fractional edge covers , 2006, SODA '06.

[16]  M. Mézard,et al.  Analytic and Algorithmic Solution of Random Satisfiability Problems , 2002, Science.

[17]  Peter C. Cheeseman,et al.  Where the Really Hard Problems Are , 1991, IJCAI.

[18]  Yun Fan,et al.  A general model and thresholds for random constraint satisfaction problems , 2012, Artif. Intell..

[19]  Wei Jiang,et al.  Two Hardness Results on Feedback Vertex Sets , 2011, FAW-AAIM.

[20]  Kaile Su,et al.  Large Hinge Width on Sparse Random Hypergraphs , 2011, IJCAI.

[21]  Yong Gao,et al.  On the Threshold of Having a Linear Treewidth in Random Graphs , 2006, COCOON.

[22]  Georg Gottlob,et al.  Hypertree width and related hypergraph invariants , 2007, Eur. J. Comb..

[23]  Sang-il Oum,et al.  Rank‐width of random graphs , 2010, J. Graph Theory.

[24]  Yong Gao,et al.  Phase Transition of Tractability in Constraint Satisfaction and Bayesian Network Inference , 2002, UAI.

[25]  David G. Mitchell,et al.  Finding hard instances of the satisfiability problem: A survey , 1996, Satisfiability Problem: Theory and Applications.

[26]  Ke Xu,et al.  Analytical and belief-propagation studies of random constraint satisfaction problems with growing domains. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[27]  Ke Xu,et al.  Large hypertree width for sparse random hypergraphs , 2015, J. Comb. Optim..