Object Tracking by Oversampling Local Features

In this paper, we present the ALIEN tracking method that exploits oversampling of local invariant representations to build a robust object/context discriminative classifier. To this end, we use multiple instances of scale invariant local features weakly aligned along the object template. This allows taking into account the 3D shape deviations from planarity and their interactions with shadows, occlusions, and sensor quantization for which no invariant representations can be defined. A non-parametric learning algorithm based on the transitive matching property discriminates the object from the context and prevents improper object template updating during occlusion. We show that our learning rule has asymptotic stability under mild conditions and confirms the drift-free capability of the method in long-term tracking. A real-time implementation of the ALIEN tracker has been evaluated in comparison with the state-of-the-art tracking systems on an extensive set of publicly available video sequences that represent most of the critical conditions occurring in real tracking environments. We have reported superior or equal performance in most of the cases and verified tracking with no drift in very long video sequences.

[1]  Luc Van Gool,et al.  Beyond semi-supervised tracking: Tracking should be as simple as detection, but not simpler than recognition , 2009, 2009 IEEE 12th International Conference on Computer Vision Workshops, ICCV Workshops.

[2]  Zdenek Kalal,et al.  Tracking-Learning-Detection , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[3]  Roberto Cipolla,et al.  Structure and motion from silhouettes , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[4]  Paul A. Viola,et al.  Robust Real-Time Face Detection , 2001, International Journal of Computer Vision.

[5]  Robert M. Haralick,et al.  Propagating covariance in computer vision , 1994, Proceedings of 12th International Conference on Pattern Recognition.

[6]  Shai Avidan,et al.  Ensemble Tracking , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[7]  Andrea Cavallaro,et al.  Accepted for Publication in Ieee Transactions on Image Processing Adaptive Appearance Modeling for Video Tracking: Survey and Evaluation , 2022 .

[8]  Charles V. Stewart,et al.  Simultaneous Covariance Driven Correspondence (CDC) and Transformation Estimation in the Expectation Maximization Framework , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[9]  Chunhua Shen,et al.  Real-time visual tracking using compressive sensing , 2011, CVPR 2011.

[10]  Bohyung Han,et al.  Learning occlusion with likelihoods for visual tracking , 2011, 2011 International Conference on Computer Vision.

[11]  G LoweDavid,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004 .

[12]  Ramakant Nevatia,et al.  Part-Based 3D Descriptions of Complex Objects from a Single Image , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[13]  Allen R. Hanson,et al.  Improvements in Joint Domain-Range Modeling for Background Subtraction , 2012, BMVC.

[14]  Ming-Hsuan Yang,et al.  An experimental comparison of online object-tracking algorithms , 2011, Optical Engineering + Applications.

[15]  Qing Wang,et al.  Online discriminative object tracking with local sparse representation , 2012, 2012 IEEE Workshop on the Applications of Computer Vision (WACV).

[16]  Ang Li,et al.  Discriminative Nonorthogonal Binary Subspace Tracking , 2010, ECCV.

[17]  R. Collins,et al.  On-line selection of discriminative tracking features , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[18]  Horst Bischof,et al.  Real-Time Tracking via On-line Boosting , 2006, BMVC.

[19]  J. Gibson The Ecological Approach to Visual Perception , 1979 .

[20]  V. I. Oseledec A multiplicative ergodic theorem: Lyapunov characteristic num-bers for dynamical systems , 1968 .

[21]  David A. Forsyth,et al.  Class-based grouping in perspective images , 1995, Proceedings of IEEE International Conference on Computer Vision.

[22]  Roland Siegwart,et al.  BRISK: Binary Robust invariant scalable keypoints , 2011, 2011 International Conference on Computer Vision.

[23]  Michel Dhome,et al.  Inverse Perspective Transform Using Zero-Curvature Contour Points: Application to the Localization of Some Generalized Cylinders from a Single View , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[24]  Gary R. Bradski,et al.  ORB: An efficient alternative to SIFT or SURF , 2011, 2011 International Conference on Computer Vision.

[25]  Konrad Klein,et al.  Texturing 3D Models of Real World Objects from Multiple Unregistered Photographic Views , 1999, Comput. Graph. Forum.

[26]  Rynson W. H. Lau,et al.  Visual Tracking via Locality Sensitive Histograms , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[27]  Huchuan Lu,et al.  Visual tracking via adaptive structural local sparse appearance model , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[28]  Horst Bischof,et al.  Semi-supervised On-Line Boosting for Robust Tracking , 2008, ECCV.

[29]  Horst Bischof,et al.  On-line Boosting and Vision , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[30]  Huchuan Lu,et al.  Superpixel tracking , 2011, 2011 International Conference on Computer Vision.

[31]  Shengping Zhang,et al.  Sparse coding based visual tracking: Review and experimental comparison , 2013, Pattern Recognit..

[32]  Stephen J. Maybank,et al.  A Method for Interactive 3D Reconstruction of Piecewise Planar Objects from Single Images , 1999, BMVC.

[33]  Ming-Hsuan Yang,et al.  Visual tracking with histograms and articulating blocks , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[34]  Richard Szeliski,et al.  A Taxonomy and Evaluation of Dense Two-Frame Stereo Correspondence Algorithms , 2001, International Journal of Computer Vision.

[35]  Horst Bischof,et al.  On-line Random Forests , 2009, 2009 IEEE 12th International Conference on Computer Vision Workshops, ICCV Workshops.

[36]  Patrick Pérez,et al.  Color-Based Probabilistic Tracking , 2002, ECCV.

[37]  Marwan Mattar,et al.  Labeled Faces in the Wild: A Database forStudying Face Recognition in Unconstrained Environments , 2008 .

[38]  Bernhard P. Wrobel,et al.  Multiple View Geometry in Computer Vision , 2001 .

[39]  Vincent Lepetit,et al.  BRIEF: Binary Robust Independent Elementary Features , 2010, ECCV.

[40]  Michael Werman,et al.  Multiresolution Textures from Image Sequences , 1997, IEEE Computer Graphics and Applications.

[41]  Gregory D. Hager,et al.  A Nonparametric Treatment for Location/Segmentation Based Visual Tracking , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[42]  Luc Van Gool,et al.  Planar homologies as a basis for grouping and recognition , 1998, Image Vis. Comput..

[43]  Horst Bischof,et al.  PROST: Parallel robust online simple tracking , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[44]  Zhongfei Zhang,et al.  A survey of appearance models in visual object tracking , 2013, ACM Trans. Intell. Syst. Technol..

[45]  Paulo R. S. Mendonça,et al.  Epipolar geometry from profiles under circular motion , 2001, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[46]  Stefano Soatto,et al.  Steps Towards a Theory of Visual Information: Active Perception, Signal-to-Symbol Conversion and the Interplay Between Sensing and Control , 2011, ArXiv.

[47]  Andrew Zisserman,et al.  Applications of Invariance in Computer Vision , 1993, Lecture Notes in Computer Science.

[48]  Carlo Tomasi,et al.  Efficient Visual Object Tracking with Online Nearest Neighbor Classifier , 2010, ACCV.

[49]  Roberto Cipolla,et al.  Uncertain RanSaC , 2005, MVA.

[50]  Junzhou Huang,et al.  Robust tracking using local sparse appearance model and K-selection , 2011, CVPR 2011.

[51]  Jean Ponce,et al.  Invariant Properties of Straight Homogeneous Generalized Cylinders and Their Contours , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[52]  Paulo R. S. Mendonça,et al.  Reconstruction of surfaces of revolution from single uncalibrated views , 2004, Image Vis. Comput..

[53]  Ming-Hsuan Yang,et al.  Incremental Learning for Robust Visual Tracking , 2008, International Journal of Computer Vision.

[54]  Stefano Soatto,et al.  Actionable information in vision , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[55]  Yakov Pesin,et al.  The Multiplicative Ergodic Theorem , 2013 .

[56]  David W. Murray,et al.  Guided Sampling and Consensus for Motion Estimation , 2002, ECCV.

[57]  Huchuan Lu,et al.  Robust object tracking via sparsity-based collaborative model , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[58]  Ioannis Pitas,et al.  Projection distortion analysis for flattened image mosaicing from straight uniform generalized cylinders , 2001, Pattern Recognit..

[59]  Andrew P. Witkin,et al.  Shape from Contour , 1980 .

[60]  Horst Bischof,et al.  Hough-based tracking of non-rigid objects , 2011, 2011 International Conference on Computer Vision.

[61]  B. Lautrup,et al.  Products of random matrices. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[62]  Junseok Kwon,et al.  Visual tracking decomposition , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[63]  Hanqing Lu,et al.  Real-time visual tracking via Incremental Covariance Tensor Learning , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[64]  Gang Hua,et al.  Context-Aware Visual Tracking , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[65]  M. Pollefeys Self-calibration and metric 3d reconstruction from uncalibrated image sequences , 1999 .

[66]  Thomas W. Sederberg,et al.  Algebraic Methods for Computer Aided Geometric Design , 2002, Handbook of Computer Aided Geometric Design.

[67]  B. Schiele,et al.  Combined Object Categorization and Segmentation With an Implicit Shape Model , 2004 .

[68]  Gérard G. Medioni,et al.  Context tracker: Exploring supporters and distracters in unconstrained environments , 2011, CVPR 2011.

[69]  Andrew Zisserman,et al.  Projective Reconstruction of Surfaces of Revolution , 2003, DAGM-Symposium.

[70]  Ming-Hsuan Yang,et al.  Robust Object Tracking with Online Multiple Instance Learning , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[71]  Paulo R. S. Mendonça,et al.  Reconstruction of surfaces of revolution from single uncalibrated views , 2004, Image Vis. Comput..

[72]  Lei Zhang,et al.  Real-Time Compressive Tracking , 2012, ECCV.

[73]  J. G. Semple,et al.  Algebraic Projective Geometry , 1953 .

[74]  Feng Li,et al.  Blurred target tracking by Blur-driven Tracker , 2011, 2011 International Conference on Computer Vision.

[75]  Jiri Matas,et al.  P-N learning: Bootstrapping binary classifiers by structural constraints , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[76]  M SeitzSteven,et al.  Photorealistic Scene Reconstruction by Voxel Coloring , 1999 .

[77]  D. Ruelle,et al.  Ergodic theory of chaos and strange attractors , 1985 .

[78]  Li Bai,et al.  Minimum error bounded efficient ℓ1 tracker with occlusion detection , 2011, CVPR 2011.

[79]  Deva Ramanan,et al.  Self-Paced Learning for Long-Term Tracking , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[80]  Yuichi Yoshida,et al.  CARD: Compact And Real-time Descriptors , 2011, 2011 International Conference on Computer Vision.

[81]  Stephen J. Maybank,et al.  On plane-based camera calibration: A general algorithm, singularities, applications , 1999, Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149).

[82]  Luc Van Gool,et al.  Speeded-Up Robust Features (SURF) , 2008, Comput. Vis. Image Underst..

[83]  Ling Shao,et al.  Recent advances and trends in visual tracking: A review , 2011, Neurocomputing.

[84]  Paulo R. S. Mendonça,et al.  Camera Calibration from Surfaces of Revolution , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[85]  Takahiro Ishikawa,et al.  The template update problem , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[86]  Ehud Rivlin,et al.  Robust Fragments-based Tracking using the Integral Histogram , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[87]  Haibin Ling,et al.  Robust Visual Tracking and Vehicle Classification via Sparse Representation , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[88]  Steven M. Seitz,et al.  Photorealistic Scene Reconstruction by Voxel Coloring , 1997, International Journal of Computer Vision.

[89]  Gérard G. Medioni,et al.  Online Tracking and Reacquisition Using Co-trained Generative and Discriminative Trackers , 2008, ECCV.

[90]  Narendra Ahuja,et al.  Robust Visual Tracking via Structured Multi-Task Sparse Learning , 2012, International Journal of Computer Vision.

[91]  T. Binford,et al.  Finding and recovering SHGC objects in an edge image , 1993 .

[92]  Alexey Tsymbal,et al.  The problem of concept drift: definitions and related work , 2004 .

[93]  Yi Wu,et al.  Online Object Tracking: A Benchmark , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[94]  Arnold W. M. Smeulders,et al.  Robust Tracking Using Foreground-Background Texture Discrimination , 2006, International Journal of Computer Vision.

[95]  Narendra Ahuja,et al.  Robust visual tracking via multi-task sparse learning , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[96]  Jan-Michael Frahm,et al.  Exploiting uncertainty in random sample consensus , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[97]  Hanzi Wang,et al.  Generalized Kernel-Based Visual Tracking , 2009, IEEE Transactions on Circuits and Systems for Video Technology.

[98]  Ales Leonardis,et al.  An adaptive coupled-layer visual model for robust visual tracking , 2011, 2011 International Conference on Computer Vision.

[99]  Vibhav Vineet,et al.  Struck: Structured Output Tracking with Kernels , 2016, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[100]  Richard Szeliski,et al.  Rapid octree construction from image sequences , 1993 .

[101]  Allen Y. Yang,et al.  Robust Face Recognition via Sparse Representation , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[102]  Luc Van Gool,et al.  On-line Adaption of Class-specific Codebooks for Instance Tracking , 2010, BMVC.

[103]  Paulo R. S. Mendonça,et al.  Camera Calibration from Symmetry , 2000, IMA Conference on the Mathematics of Surfaces.

[104]  Horst Bischof,et al.  On-line semi-supervised multiple-instance boosting , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.