Physics approaches to natural locomotion: Every robot is an experiment

[1]  J. Gray The mechanism of locomotion in snakes. , 1946, The Journal of experimental biology.

[2]  J. Gray,et al.  The Kinetics of Locomotion of the Grass-Snake , 1950 .

[3]  G. Taylor Analysis of the swimming of long and narrow animals , 1952, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[4]  J. Linnett,et al.  Quantum mechanics , 1975, Nature.

[5]  F. Wilczek,et al.  Self-propulsion at low Reynolds number. , 1987, Physical review letters.

[6]  Eric Krotkov,et al.  Active perception for legged locomotion: every step is an experiment , 1990, Proceedings. 5th IEEE International Symposium on Intelligent Control 1990.

[7]  Tad McGeer,et al.  Passive Dynamic Walking , 1990, Int. J. Robotics Res..

[8]  Shigeo Hirose,et al.  Design and Control of a Mobile Robot with an Articulated Body , 1990, Int. J. Robotics Res..

[9]  C. Gans,et al.  Kinematics, muscular activity and propulsion in gopher snakes , 1998, The Journal of experimental biology.

[10]  M. Coleman,et al.  An Uncontrolled Walking Toy That Cannot Stand Still , 1998 .

[11]  R J Full,et al.  Templates and anchors: neuromechanical hypotheses of legged locomotion on land. , 1999, The Journal of experimental biology.

[12]  Andrea Mozzarelli,et al.  Is cooperative oxygen binding by hemoglobin really understood? , 1999, Nature Structural Biology.

[13]  Daniel E. Koditschek,et al.  RHex: A Simple and Highly Mobile Hexapod Robot , 2001, Int. J. Robotics Res..

[14]  J. Socha Kinematics: Gliding flight in the paradise tree snake , 2002, Nature.

[15]  G. J. HANCOCKf,et al.  THE PROPULSION OF SEA-URCHIN SPERMATOZOA , 2005 .

[16]  Russ Tedrake,et al.  Efficient Bipedal Robots Based on Passive-Dynamic Walkers , 2005, Science.

[17]  Yves Couder,et al.  Single-particle diffraction and interference at a macroscopic scale. , 2006, Physical review letters.

[18]  Hugh F. Durrant-Whyte,et al.  Simultaneous localization and mapping: part I , 2006, IEEE Robotics & Automation Magazine.

[19]  John Guckenheimer,et al.  The Dynamics of Legged Locomotion: Models, Analyses, and Challenges , 2006, SIAM Rev..

[20]  Gregory S. Chirikjian,et al.  Modular Self-Reconfigurable Robot Systems [Grand Challenges of Robotics] , 2007, IEEE Robotics & Automation Magazine.

[21]  R J Full,et al.  Distributed mechanical feedback in arthropods and robots simplifies control of rapid running on challenging terrain , 2007, Bioinspiration & biomimetics.

[22]  Paolo Fiorini,et al.  Search and Rescue Robotics , 2008, Springer Handbook of Robotics.

[23]  Auke Jan Ijspeert,et al.  Online Optimization of Swimming and Crawling in an Amphibious Snake Robot , 2008, IEEE Transactions on Robotics.

[24]  F.Z.S. Vernon A. Harris,et al.  ON THE LOCOMOTION OF THE MUD‐SKIPPER PERIOPHTHALMUS KOELREUTERI (PALLAS): (GOBIIDAE) , 2009 .

[25]  C. Pace,et al.  Mudskipper pectoral fin kinematics in aquatic and terrestrial environments , 2009, Journal of Experimental Biology.

[26]  Carl E. Rasmussen,et al.  Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.

[27]  Chen Li,et al.  Sensitive dependence of the motion of a legged robot on granular media , 2009, Proceedings of the National Academy of Sciences.

[28]  P. Umbanhowar,et al.  Mechanical models of sandfish locomotion reveal principles of high performance subsurface sand-swimming , 2011, Journal of The Royal Society Interface.

[29]  K. Y. Pettersen,et al.  Snake Robot Locomotion in Environments With Obstacles , 2012, IEEE/ASME Transactions on Mechatronics.

[30]  Eliseo Ferrante,et al.  Swarm robotics: a review from the swarm engineering perspective , 2013, Swarm Intelligence.

[31]  Paul Umbanhowar,et al.  Sliding manipulation of rigid bodies on a controlled 6-DoF plate , 2012, Int. J. Robotics Res..

[32]  Ronald S. Fearing,et al.  Ground fluidization promotes rapid running of a lightweight robot , 2013, Int. J. Robotics Res..

[33]  Howie Choset,et al.  Geometric visualization of self-propulsion in a complex medium. , 2013, Physical review letters.

[34]  Daniel I Goldman,et al.  Flipper-driven terrestrial locomotion of a sea turtle-inspired robot , 2013, Bioinspiration & biomimetics.

[35]  Chen Li,et al.  A Terradynamics of Legged Locomotion on Granular Media , 2013, Science.

[36]  Daniel I. Goldman,et al.  AN AUTOMATED SYSTEM FOR SYSTEMATIC TESTING OF LOCOMOTION ON HETEROGENEOUS GRANULAR MEDIA , 2013 .

[37]  S. Ramaswamy,et al.  Hydrodynamics of soft active matter , 2013 .

[38]  A. Matveev,et al.  Algorithms for collision-free navigation of mobile robots in complex cluttered environments: a survey , 2014, Robotica.

[39]  P. Baldi,et al.  Searching for exotic particles in high-energy physics with deep learning , 2014, Nature Communications.

[40]  Daniel I. Goldman,et al.  Colloquium: Biophysical principles of undulatory self-propulsion in granular media , 2014 .

[41]  E Roth,et al.  A comparative approach to closed-loop computation , 2014, Current Opinion in Neurobiology.

[42]  Chen Li,et al.  Terradynamically streamlined shapes in animals and robots enhance traversability through densely cluttered terrain , 2015, Bioinspiration & biomimetics.

[43]  R. Full,et al.  Principles of appendage design in robots and animals determining terradynamic performance on flowable ground , 2015, Bioinspiration & biomimetics.

[44]  J. M. Bush Pilot-Wave Hydrodynamics , 2015 .

[45]  Daniel I. Goldman,et al.  Anticipatory control using substrate manipulation enables trajectory control of legged locomotion on heterogeneous granular media , 2015, Defense + Security Symposium.

[46]  Ken Kamrin,et al.  Intrusion in heterogeneous materials: Simple global rules from complex micro-mechanics , 2015 .

[47]  Daniel I. Goldman,et al.  The dynamics of legged locomotion in heterogeneous terrain: universality in scattering and sensitivity to initial conditions , 2015, Robotics: Science and Systems.

[48]  S. Shankar Sastry,et al.  Model Reduction Near Periodic Orbits of Hybrid Dynamical Systems , 2013, IEEE Transactions on Automatic Control.

[49]  Sergio Mugnai,et al.  Nutation in Plants , 2015 .

[50]  Slithering on sand: kinematics and controls for success on granular media. , 2016 .

[51]  Howie Choset,et al.  Geometric Swimming on a Granular Surface , 2016, Robotics: Science and Systems.

[52]  Jennifer M. Rieser,et al.  Tail use improves performance on soft substrates in models of early vertebrate land locomotors , 2016, Science.

[53]  Aaron D. Ames,et al.  Realizing dynamic and efficient bipedal locomotion on the humanoid robot DURUS , 2016, 2016 IEEE International Conference on Robotics and Automation (ICRA).

[54]  Howie Choset,et al.  Simplifying Gait Design via Shape Basis Optimization , 2016, Robotics: Science and Systems.

[55]  Howie Choset,et al.  A review on locomotion robophysics: the study of movement at the intersection of robotics, soft matter and dynamical systems , 2016, Reports on progress in physics. Physical Society.

[56]  Aaron D. Ames,et al.  Tractable terrain-aware motion planning on granular media: An impulsive jumping study , 2016, 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[57]  Ali Sadeghi,et al.  Circumnutations as a penetration strategy in a plant-root-inspired robot , 2016, 2016 IEEE International Conference on Robotics and Automation (ICRA).

[58]  Howie Choset,et al.  Geometric Mechanics Applied to Tetrapod Locomotion on Granular Media , 2017, Living Machines.

[59]  Benjamin L. de Bivort,et al.  Ethology as a physical science , 2018, Nature Physics.

[60]  Gordon J. Berman,et al.  Measuring behavior across scales , 2017, BMC Biology.

[61]  Daniel I. Goldman,et al.  Locomoting Robots Composed of Immobile Robots , 2018, 2018 Second IEEE International Conference on Robotic Computing (IRC).

[62]  Howie Choset,et al.  Coordination of back bending and leg movements for quadrupedal locomotion , 2018, Robotics: Science and Systems.

[63]  Dana Randall,et al.  Phototactic supersmarticles , 2018, Artificial Life and Robotics.