Iterative Smoothed Residuals: A Low-Pass Filter for Smoothing With Controlled Shrinkage
暂无分享,去创建一个
[1] Jan J. Koenderink,et al. Spatial Derivatives and the Propagation of Noise in Gaussian Scale Space , 1993, J. Vis. Commun. Image Represent..
[2] John W. Tukey,et al. Exploratory Data Analysis. , 1979 .
[3] John Oliensis. Local Reproducible Smoothing Without Shrinkage , 1993, IEEE Trans. Pattern Anal. Mach. Intell..
[4] Y. Meyer. Wavelets and Operators , 1993 .
[5] Peter Craven,et al. Smoothing noisy data with spline functions , 1978 .
[6] Alan L. Yuille,et al. Scaling Theorems for Zero Crossings , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[7] Guillermo Sapiro,et al. Area and Length Preserving Geometric Invariant Scale-Spaces , 1995, IEEE Trans. Pattern Anal. Mach. Intell..
[8] C. K. Yuen,et al. Digital Filters , 1979, IEEE Transactions on Systems, Man, and Cybernetics.
[9] G. Wahba. Smoothing noisy data with spline functions , 1975 .
[10] Gabriel Taubin,et al. Curve and surface smoothing without shrinkage , 1995, Proceedings of IEEE International Conference on Computer Vision.
[11] Andrew P. Witkin,et al. Uniqueness of the Gaussian Kernel for Scale-Space Filtering , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[12] D.J. Anderson,et al. Optimal Estimation of Contour Properties by Cross-Validated Regularization , 1989, IEEE Trans. Pattern Anal. Mach. Intell..