Amodal segmentation of cane sugar crystal via deep neural networks

[1]  H. Benkhelifa,et al.  Analyzing the microstructure of a fresh sorbet with X-ray micro-computed tomography: Sampling, acquisition, and image processing , 2021 .

[2]  Xingyi Li,et al.  Computer vision online measurement of shiitake mushroom (Lentinus edodes) surface wrinkling and shrinkage during hot air drying with humidity control , 2021 .

[3]  Tao Yao,et al.  Monitoring sugar crystallization with deep neural networks , 2020, Journal of Food Engineering.

[4]  Lanfen Lin,et al.  UNet 3+: A Full-Scale Connected UNet for Medical Image Segmentation , 2020, ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[5]  Ross B. Girshick,et al.  Mask R-CNN , 2017, 1703.06870.

[6]  Si Zhang,et al.  Graph convolutional networks: a comprehensive review , 2019, Computational Social Networks.

[7]  Andrea Vedaldi,et al.  Understanding Deep Networks via Extremal Perturbations and Smooth Masks , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[8]  Khurram Yousaf,et al.  Tomato volume and mass estimation using computer vision and machine learning algorithms: Cherry tomato model , 2019 .

[9]  Xiaoyong Shen,et al.  Amodal Instance Segmentation With KINS Dataset , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[10]  Ernestina Casiraghi,et al.  Fish fillet authentication by image analysis , 2018, Journal of Food Engineering.

[11]  Raquel Urtasun,et al.  DeepRoadMapper: Extracting Road Topology from Aerial Images , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[12]  Kaiming He,et al.  Feature Pyramid Networks for Object Detection , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[13]  Yuandong Tian,et al.  Semantic Amodal Segmentation , 2015, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[14]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[15]  M. Bahrami,et al.  Measurement of Morphological Characteristics of Raw Cane Sugar Crystals Using Digital Image Analysis , 2015 .

[16]  Kaiming He,et al.  Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks , 2015, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[17]  Sergey Ioffe,et al.  Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift , 2015, ICML.

[18]  Trevor Darrell,et al.  Fully Convolutional Networks for Semantic Segmentation , 2017, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[19]  Pietro Perona,et al.  Microsoft COCO: Common Objects in Context , 2014, ECCV.

[20]  P. Kellman,et al.  Perceptual Learning, Cognition, and Expertise , 2013 .

[21]  Kevin J. Roberts,et al.  Multi-scale segmentation image analysis for the in-process monitoring of particle shape with batch crystallisers , 2005 .

[22]  E. H. van den Berg,et al.  Automated separation of touching grains in digital images of thin sections , 2002 .

[23]  Sethuraman Panchanathan,et al.  Automatic classification of cells using morphological shape in peripheral blood images , 2000, SPIE Optics East.

[24]  Roberto Manduchi,et al.  Bilateral filtering for gray and color images , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).

[25]  Janusz Zalewski,et al.  Rough sets: Theoretical aspects of reasoning about data , 1996 .

[26]  Jean-Philippe Thiran,et al.  Automatic recognition of cancerous cells using mathematical morphology , 1994, Other Conferences.

[27]  James C. Bezdek,et al.  Modified Objective Function Algorithms , 1981 .

[28]  S. Katz,et al.  Some problems in particle technology: A statistical mechanical formulation , 1964 .