Facial Expression Recognition Using Sparse Representation

A bstract: - Facial expression recognition is an interesting and challenging subject in signal processing and artificial intelligence. In this paper, a new method of facial expression recognition based on the sparse representation classifier (SRC) is presented. Two typical appearance facial features, i.e., local binary patterns (LBP) and Gabor wavelets representations are extracted to evaluate the performance of the SRC method on facial expression recognition tasks. Three representative classification methods, including artificial neural network (ANN), K-nearest neighbor (KNN), support vector machines (SVM), are used to compare with the SRC method. Experimental results on two popular facial expression databases, i.e., the JAFFE database and the Cohn-Kanade database, demonstrate the promising performance of the presented SRC method on facial expression recognition tasks, outperforming the other used methods.

[1]  Shiqing Zhang,et al.  Facial expression recognition based on local binary patterns and local fisher discriminant analysis , 2012 .

[2]  Takeo Kanade,et al.  Facial Expression Recognition , 2011, Handbook of Face Recognition.

[3]  Paola Campadelli,et al.  Face and Facial Feature Localization , 2005, ICIAP.

[4]  Hossein Mobahi,et al.  Toward a Practical Face Recognition System: Robust Alignment and Illumination by Sparse Representation , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[5]  Hamido Fujita,et al.  A Framework of a Speech Communication System with Emotion Processing , 2007 .

[6]  Nicu Sebe,et al.  Authentic facial expression analysis , 2004, Sixth IEEE International Conference on Automatic Face and Gesture Recognition, 2004. Proceedings..

[7]  Emmanuel J. Candès,et al.  Decoding by linear programming , 2005, IEEE Transactions on Information Theory.

[8]  Paul A. Viola,et al.  Robust Real-Time Face Detection , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[9]  Oksam Chae,et al.  Robust Facial Expression Recognition Based on Local Directional Pattern , 2010 .

[10]  Peter E. Hart,et al.  Nearest neighbor pattern classification , 1967, IEEE Trans. Inf. Theory.

[11]  Michael J. Lyons,et al.  Automatic Classification of Single Facial Images , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[12]  Shiqing Zhang,et al.  Spoken Emotion Recognition Using Radial Basis Function Neural Network , 2011, CSEE.

[13]  Takeo Kanade,et al.  Comprehensive database for facial expression analysis , 2000, Proceedings Fourth IEEE International Conference on Automatic Face and Gesture Recognition (Cat. No. PR00580).

[14]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.

[15]  Shaogang Gong,et al.  Facial expression recognition based on Local Binary Patterns: A comprehensive study , 2009, Image Vis. Comput..

[16]  David J. Kriegman,et al.  Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection , 1996, ECCV.

[17]  Eva Hudlicka,et al.  To feel or not to feel: The role of affect in human-computer interaction , 2003, Int. J. Hum. Comput. Stud..

[18]  David L Donoho,et al.  Compressed sensing , 2006, IEEE Transactions on Information Theory.

[19]  Ian T. Jolliffe,et al.  Principal Component Analysis , 2002, International Encyclopedia of Statistical Science.

[20]  Jooyoung Park,et al.  Universal Approximation Using Radial-Basis-Function Networks , 1991, Neural Computation.

[21]  Guillermo Sapiro,et al.  Sparse Representation for Computer Vision and Pattern Recognition , 2010, Proceedings of the IEEE.

[22]  Marian Stewart Bartlett,et al.  Classifying Facial Actions , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[23]  W. Zheng,et al.  Facial expression recognition using kernel canonical correlation analysis (KCCA) , 2006, IEEE Transactions on Neural Networks.

[24]  Allen Y. Yang,et al.  Robust Face Recognition via Sparse Representation , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[25]  Alex Pentland,et al.  Face recognition using eigenfaces , 1991, Proceedings. 1991 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[26]  Gwen Littlewort,et al.  Recognizing facial expression: machine learning and application to spontaneous behavior , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[27]  Takeo Kanade,et al.  Recognizing Action Units for Facial Expression Analysis , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[28]  E.J. Candes,et al.  An Introduction To Compressive Sampling , 2008, IEEE Signal Processing Magazine.

[29]  Ganesh K. Venayagamoorthy,et al.  Recognition of facial expressions using Gabor wavelets and learning vector quantization , 2008, Eng. Appl. Artif. Intell..

[30]  George N. Votsis,et al.  Emotion recognition in human-computer interaction , 2001, IEEE Signal Process. Mag..

[31]  Shiqing Zhang,et al.  Facial expression recognition using local binary patterns and discriminant kernel locally linear embedding , 2012, EURASIP Journal on Advances in Signal Processing.

[32]  David J. Kriegman,et al.  Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection , 1996, ECCV.

[33]  R.G. Baraniuk,et al.  Compressive Sensing [Lecture Notes] , 2007, IEEE Signal Processing Magazine.

[34]  Fadi Dornaika,et al.  Improving dynamic facial expression recognition with feature subset selection , 2011, Pattern Recognit. Lett..

[35]  Zhen Li,et al.  A Novel Feature Extraction Method for Facial Expression Recognition , 2006, JCIS.

[36]  Nadia Bianchi-Berthouze,et al.  Naturalistic Affective Expression Classification by a Multi-stage Approach Based on Hidden Markov Models , 2011, ACII.

[37]  Ioannis Pitas,et al.  Facial Expression Recognition in Image Sequences Using Geometric Deformation Features and Support Vector Machines , 2007, IEEE Transactions on Image Processing.

[38]  Filippo Neri,et al.  Agent-based modeling under partial and full knowledge learning settings to simulate financial markets , 2012, AI Commun..