Outdoor Downward-Facing Optical Flow Odometry with Commodity Sensors

Positioning is a key task in most field robotics applications but can be very challenging in GPS-denied or high-slip environments. A common tactic in such cases is to position visually, and we present a visual odometry implementa- tion with the unusual reliance on optical mouse sensors to report vehicle velocity. Using multiple kilometers of data from a lunar rover prototype, we demonstrate that, in conjunction with a moderate-grade inertial measurement unit, such a sensor can provide an integrated pose stream that is at times more accurate than that achievable by wheel odometry and visibly more desirable for perception purposes than that provided by a high-end GPS-INS system. A discussion of the sensor's limitations and several drift mitigating strategies attempted are presented.

[1]  Navid Nourani-Vatani,et al.  IMU aided 3D visual odometry for car-like vehicles , 2008, ICRA 2008.

[2]  Alonzo Kelly Mobile Robot Localization from Large-Scale Appearance Mosaics , 2000, Int. J. Robotics Res..

[3]  John Scott Drilling,et al.  in Allen''''s Astrophysical Quantities , 2000 .

[4]  Ralph Belknap Baldwin A fundamental survey of the moon , 1965 .

[5]  J. Borenstein,et al.  Wheel slippage and sinkage detection for planetary rovers , 2006, IEEE/ASME Transactions on Mechatronics.

[6]  Dario Floreano,et al.  Fly-inspired visual steering of an ultralight indoor aircraft , 2006, IEEE Transactions on Robotics.

[7]  A. Cox,et al.  Allen's astrophysical quantities , 2000 .

[8]  Johann Borenstein,et al.  Accurate mobile robot dead-reckoning with a precision-calibrated fiber-optic gyroscope , 2001, IEEE Trans. Robotics Autom..

[9]  Jordi Palacín,et al.  The optical mouse for indoor mobile robot odometry measurement , 2006 .

[10]  Gaurav S. Sukhatme,et al.  Landing on a Moving Target Using an Autonomous Helicopter , 2003, FSR.

[11]  Berthold K. P. Horn,et al.  Determining Optical Flow , 1981, Other Conferences.

[12]  David Wettergreen,et al.  Design and Experimentation of a Rover Concept for Lunar Crater Resource Survey , 2009 .

[13]  Timothy W. McLain,et al.  Maximizing miniature aerial vehicles , 2006, IEEE Robotics & Automation Magazine.

[14]  Mark Ovinis,et al.  On-line optical flow feedback for mobile robot localization/ navigation , 2003, Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453).

[15]  Navid Nourani-Vatani,et al.  Practical visual odometry for car-like vehicles , 2009, 2009 IEEE International Conference on Robotics and Automation.

[16]  Sanghyup Lee,et al.  Robust mobile robot velocity estimation using redundant number of optical mice , 2008, 2008 International Conference on Information and Automation.

[17]  Larry H. Matthies,et al.  Two years of Visual Odometry on the Mars Exploration Rovers , 2007, J. Field Robotics.

[18]  Larry Matthies,et al.  Two years of Visual Odometry on the Mars Exploration Rovers: Field Reports , 2007 .

[19]  Fumio Miyazaki,et al.  Precise dead-reckoning for mobile robots using multiple optical mouse sensorsx4 , 2005, ICINCO.