Geometric Algebras for Euclidean Geometry

AbstractThe discussion of how to apply geometric algebra to euclidean $${n}$$n-space has been clouded by a number of conceptual misunderstandings which we first identify and resolve, based on a thorough review of crucial but largely forgotten themes from nineteenth century mathematics. We then introduce the dual projectivized Clifford algebra $${\mathbf{P}(\mathbb{R}_{n,0,1}^{*})}$$P(Rn,0,1∗) (euclidean PGA) as the most promising homogeneous (1-up) candidate for euclidean geometry. We compare euclidean PGA and the popular 2-up model CGA (conformal geometric algebra), restricting attention to flat geometric primitives, and show that on this domain they exhibit the same formal feature set. We thereby establish that euclidean PGA is the smallest structure-preserving euclidean GA. We compare the two algebras in more detail, with respect to a number of practical criteria, including implementation of kinematics and rigid body mechanics. We then extend the comparison to include euclidean sphere primitives. We conclude that euclidean PGA provides a natural transition, both scientifically and pedagogically, between vector space models and the more complex and powerful CGA.

[1]  R. Mises Motorrechnung, ein neues Hilfsmittel der Mechanik , 2022 .

[2]  J. D. Everett A Treatise on the Theory of Screws , 1901, Nature.

[3]  Charles G. Gunn,et al.  Advances in Metric-neutral Visualization , 2010 .

[4]  Eduardo Bayro-Corrochano,et al.  Motor algebra approach for computing the kinematics of robot manipulators , 2000 .

[5]  W. Greub Linear Algebra , 1981 .

[6]  Charles Gunn,et al.  Geometry, Kinematics, and Rigid Body Mechanics in Cayley-Klein Geometries , 2011 .

[7]  Brittany Terese Fasy,et al.  Review of Geometric algebra for computer science by Leo Dorst, Daniel Fontijne, and Stephen Mann (Morgan Kaufmann Publishers, 2007) , 2008, SIGA.

[8]  Leo Dorst,et al.  Tutorial Appendix: Structure Preserving Representation of Euclidean Motions Through Conformal Geometric Algebra , 2011, Guide to Geometric Algebra in Practice.

[9]  C. Doran,et al.  Geometric Algebra for Physicists , 2003 .

[10]  Jon M. Selig Clifford algebra of points, lines and planes , 2000, Robotica.

[11]  Anthony N. Lasenby,et al.  Recent Applications of Conformal Geometric Algebra , 2004, IWMM/GIAE.

[12]  J. Michael McCarthy,et al.  Introduction to theoretical kinematics , 1990 .

[13]  K. Zindler Geometrie der Dynamen , 1903 .

[14]  Joan Lasenby,et al.  Guide to Geometric Algebra in Practice , 2011 .

[15]  David Hestenes,et al.  New algebraic tools for classical geometry , 2001 .

[16]  J. M. Selig Geometric Fundamentals of Robotics , 2004, Monographs in Computer Science.

[17]  J. Gray Die geschichte der geometrischen mechanik im 19. Jahrhundert: By Renatus Ziegler. Franz Steiner Verlag Wiesbaden GmbH Stuttgart. Boethius XIII. 1985. vii + 260 pp. DM 48 , 1990 .

[18]  David Hestenes,et al.  New Tools for Computational Geometry and Rejuvenation of Screw Theory , 2010, Geometric Algebra Computing.

[19]  J. Kepler,et al.  Harmonices mundi libri V. , 1969 .

[20]  Gerhard Kowol Projektive Geometrie und Cayley-Klein Geometrien der Ebene , 2009 .

[21]  D. Hestenes,et al.  Projective geometry with Clifford algebra , 1991 .

[22]  Charles Gunn,et al.  On the Homogeneous Model of Euclidean Geometry , 2011, Guide to Geometric Algebra in Practice.

[23]  C. Barus A treatise on the theory of screws , 1998 .

[24]  Felix Klein,et al.  Vorlesungen über nicht-euklidische Geometrie , 1928 .

[25]  Anthony N. Lasenby,et al.  Rigid Body Dynamics and Conformal Geometric Algebra , 2011, Guide to Geometric Algebra in Practice.

[26]  Leo Dorst Total Least Squares Fitting of k-Spheres in n-D Euclidean Space Using an (n+2)-D Isometric Representation , 2014, Journal of Mathematical Imaging and Vision.

[27]  Clifford,et al.  Preliminary Sketch of Biquaternions , 1871 .

[28]  Stephen Mann,et al.  Geometric algebra for computer science - an object-oriented approach to geometry , 2007, The Morgan Kaufmann series in computer graphics.

[29]  Hongbo Li Invariant Algebras and Geometric Reasoning , 2008 .

[30]  Christian Perwass,et al.  Geometric Algebra with Applications in Engineering , 2008, Geometry and Computing.

[31]  Felix Klein,et al.  Ueber Liniengeometrie und metrische Geometrie , 1872 .