On the Theory of Policy Gradient Methods: Optimality, Approximation, and Distribution Shift

Policy gradient methods are among the most effective methods in challenging reinforcement learning problems with large state and/or action spaces. However, little is known about even their most basic theoretical convergence properties, including: if and how fast they converge to a globally optimal solution or how they cope with approximation error due to using a restricted class of parametric policies. This work provides provable characterizations of the computational, approximation, and sample size properties of policy gradient methods in the context of discounted Markov Decision Processes (MDPs). We focus on both: "tabular" policy parameterizations, where the optimal policy is contained in the class and where we show global convergence to the optimal policy; and parametric policy classes (considering both log-linear and neural policy classes), which may not contain the optimal policy and where we provide agnostic learning results. One central contribution of this work is in providing approximation guarantees that are average case -- which avoid explicit worst-case dependencies on the size of state space -- by making a formal connection to supervised learning under distribution shift. This characterization shows an important interplay between estimation error, approximation error, and exploration (as characterized through a precisely defined condition number).

[1]  R. Bellman,et al.  FUNCTIONAL APPROXIMATIONS AND DYNAMIC PROGRAMMING , 1959 .

[2]  John Darzentas,et al.  Problem Complexity and Method Efficiency in Optimization , 1983 .

[3]  Jing Peng,et al.  Function Optimization using Connectionist Reinforcement Learning Algorithms , 1991 .

[4]  Yoav Freund,et al.  A decision-theoretic generalization of on-line learning and an application to boosting , 1995, EuroCOLT.

[5]  John N. Tsitsiklis,et al.  Neuro-Dynamic Programming , 1996, Encyclopedia of Machine Learning.

[6]  K. Ball An elementary introduction to modern convex geometry, in flavors of geometry , 1997 .

[7]  K. Ball An Elementary Introduction to Modern Convex Geometry , 1997 .

[8]  Justin A. Boyan,et al.  Least-Squares Temporal Difference Learning , 1999, ICML.

[9]  John N. Tsitsiklis,et al.  Actor-Critic Algorithms , 1999, NIPS.

[10]  Yishay Mansour,et al.  Policy Gradient Methods for Reinforcement Learning with Function Approximation , 1999, NIPS.

[11]  Sham M. Kakade,et al.  A Natural Policy Gradient , 2001, NIPS.

[12]  John Langford,et al.  Approximately Optimal Approximate Reinforcement Learning , 2002, ICML.

[13]  Ronen I. Brafman,et al.  R-MAX - A General Polynomial Time Algorithm for Near-Optimal Reinforcement Learning , 2001, J. Mach. Learn. Res..

[14]  Rémi Munos,et al.  Error Bounds for Approximate Policy Iteration , 2003, ICML.

[15]  Jeff G. Schneider,et al.  Covariant Policy Search , 2003, IJCAI.

[16]  Sham M. Kakade,et al.  On the sample complexity of reinforcement learning. , 2003 .

[17]  Jeff G. Schneider,et al.  Policy Search by Dynamic Programming , 2003, NIPS.

[18]  Ronald J. Williams,et al.  Simple Statistical Gradient-Following Algorithms for Connectionist Reinforcement Learning , 2004, Machine Learning.

[19]  Michael Kearns,et al.  Near-Optimal Reinforcement Learning in Polynomial Time , 2002, Machine Learning.

[20]  Csaba Szepesvári,et al.  Finite time bounds for sampling based fitted value iteration , 2005, ICML.

[21]  Rémi Munos,et al.  Error Bounds for Approximate Value Iteration , 2005, AAAI.

[22]  Stefan Schaal,et al.  Natural Actor-Critic , 2003, Neurocomputing.

[23]  Yurii Nesterov,et al.  Cubic regularization of Newton method and its global performance , 2006, Math. Program..

[24]  Csaba Szepesvári,et al.  Learning Near-Optimal Policies with Bellman-Residual Minimization Based Fitted Policy Iteration and a Single Sample Path , 2006, COLT.

[25]  Gábor Lugosi,et al.  Prediction, learning, and games , 2006 .

[26]  Adrian S. Lewis,et al.  The [barred L]ojasiewicz Inequality for Nonsmooth Subanalytic Functions with Applications to Subgradient Dynamical Systems , 2006, SIAM J. Optim..

[27]  Shalabh Bhatnagar,et al.  Natural actor-critic algorithms , 2009, Autom..

[28]  Shalabh Bhatnagar,et al.  Natural actorcritic algorithms. , 2009 .

[29]  Yishay Mansour,et al.  Online Markov Decision Processes , 2009, Math. Oper. Res..

[30]  Alessandro Lazaric,et al.  Analysis of a Classification-based Policy Iteration Algorithm , 2010, ICML.

[31]  Yasemin Altun,et al.  Relative Entropy Policy Search , 2010 .

[32]  Hédy Attouch,et al.  Proximal Alternating Minimization and Projection Methods for Nonconvex Problems: An Approach Based on the Kurdyka-Lojasiewicz Inequality , 2008, Math. Oper. Res..

[33]  Csaba Szepesvári,et al.  Error Propagation for Approximate Policy and Value Iteration , 2010, NIPS.

[34]  Sham M. Kakade,et al.  Towards Minimax Policies for Online Linear Optimization with Bandit Feedback , 2012, COLT.

[35]  Hilbert J. Kappen,et al.  Dynamic policy programming , 2010, J. Mach. Learn. Res..

[36]  Shai Shalev-Shwartz,et al.  Online Learning and Online Convex Optimization , 2012, Found. Trends Mach. Learn..

[37]  Sham M. Kakade,et al.  Random Design Analysis of Ridge Regression , 2012, COLT.

[38]  Saeed Ghadimi,et al.  Stochastic First- and Zeroth-Order Methods for Nonconvex Stochastic Programming , 2013, SIAM J. Optim..

[39]  Matthieu Geist,et al.  Local Policy Search in a Convex Space and Conservative Policy Iteration as Boosted Policy Search , 2014, ECML/PKDD.

[40]  F. John Extremum Problems with Inequalities as Subsidiary Conditions , 2014 .

[41]  Shai Ben-David,et al.  Understanding Machine Learning: From Theory to Algorithms , 2014 .

[42]  Csaba Szepesvári,et al.  Online Markov Decision Processes Under Bandit Feedback , 2010, IEEE Transactions on Automatic Control.

[43]  Bruno Scherrer,et al.  Approximate Policy Iteration Schemes: A Comparison , 2014, ICML.

[44]  Sergey Levine,et al.  Trust Region Policy Optimization , 2015, ICML.

[45]  Matthieu Geist,et al.  Approximate modified policy iteration and its application to the game of Tetris , 2015, J. Mach. Learn. Res..

[46]  Furong Huang,et al.  Escaping From Saddle Points - Online Stochastic Gradient for Tensor Decomposition , 2015, COLT.

[47]  Mark W. Schmidt,et al.  Linear Convergence of Gradient and Proximal-Gradient Methods Under the Polyak-Łojasiewicz Condition , 2016, ECML/PKDD.

[48]  Saeed Ghadimi,et al.  Accelerated gradient methods for nonconvex nonlinear and stochastic programming , 2013, Mathematical Programming.

[49]  Alex Graves,et al.  Asynchronous Methods for Deep Reinforcement Learning , 2016, ICML.

[50]  Nan Jiang,et al.  Contextual Decision Processes with low Bellman rank are PAC-Learnable , 2016, ICML.

[51]  Vicenç Gómez,et al.  A unified view of entropy-regularized Markov decision processes , 2017, ArXiv.

[52]  Prateek Jain,et al.  Parallelizing Stochastic Gradient Descent for Least Squares Regression: Mini-batching, Averaging, and Model Misspecification , 2016, J. Mach. Learn. Res..

[53]  Amir Beck,et al.  First-Order Methods in Optimization , 2017 .

[54]  Sham M. Kakade,et al.  Towards Generalization and Simplicity in Continuous Control , 2017, NIPS.

[55]  Alec Radford,et al.  Proximal Policy Optimization Algorithms , 2017, ArXiv.

[56]  Michael I. Jordan,et al.  How to Escape Saddle Points Efficiently , 2017, ICML.

[57]  Sham M. Kakade,et al.  Global Convergence of Policy Gradient Methods for Linearized Control Problems , 2018, ICML 2018.

[58]  Sham M. Kakade,et al.  Global Convergence of Policy Gradient Methods for the Linear Quadratic Regulator , 2018, ICML.

[59]  Yuval Tassa,et al.  Maximum a Posteriori Policy Optimisation , 2018, ICLR.

[60]  Mengdi Wang,et al.  Sample-Optimal Parametric Q-Learning Using Linearly Additive Features , 2019, ICML.

[61]  Nevena Lazic,et al.  Exploration-Enhanced POLITEX , 2019, ArXiv.

[62]  Qi Cai,et al.  Neural Proximal/Trust Region Policy Optimization Attains Globally Optimal Policy , 2019, ArXiv.

[63]  Peter L. Bartlett,et al.  POLITEX: Regret Bounds for Policy Iteration using Expert Prediction , 2019, ICML.

[64]  Nan Jiang,et al.  Information-Theoretic Considerations in Batch Reinforcement Learning , 2019, ICML.

[65]  Matthieu Geist,et al.  A Theory of Regularized Markov Decision Processes , 2019, ICML.

[66]  Nicolas Le Roux,et al.  Understanding the impact of entropy on policy optimization , 2018, ICML.

[67]  Jalaj Bhandari,et al.  Global Optimality Guarantees For Policy Gradient Methods , 2019, ArXiv.

[68]  J. Lee,et al.  Neural Temporal-Difference Learning Converges to Global Optima , 2019, NeurIPS.

[69]  Michael I. Jordan,et al.  Provably Efficient Reinforcement Learning with Linear Function Approximation , 2019, COLT.

[70]  Shie Mannor,et al.  Adaptive Trust Region Policy Optimization: Global Convergence and Faster Rates for Regularized MDPs , 2019, AAAI.