Constrained Verifiable Random Functions

We extend the notion of verifiable random functions (VRF) to constrained VRFs, which generalize the concept of constrained pseudorandom functions, put forward by Boneh and Waters (Asiacrypt’13), and independently by Kiayias et al. (CCS’13) and Boyle et al. (PKC’14), who call them delegatable PRFs and functional PRFs, respectively. In a standard VRF the secret key sk allows one to evaluate a pseudorandom function at any point of its domain; in addition, it enables computation of a non-interactive proof that the function value was computed correctly. In a constrained VRF from the key sk one can derive constrained keys sk S for subsets S of the domain, which allow computation of function values and proofs only at points in S.

[1]  Anna Lysyanskaya,et al.  Unique Signatures and Verifiable Random Functions from the DH-DDH Separation , 2002, CRYPTO.

[2]  Silvio Micali,et al.  How to construct random functions , 1986, JACM.

[3]  Guy N. Rothblum,et al.  Weak Verifiable Random Functions , 2009, TCC.

[4]  Silvio Micali,et al.  Micropayments Revisited , 2002, CT-RSA.

[5]  Mihir Bellare,et al.  Random oracles are practical: a paradigm for designing efficient protocols , 1993, CCS '93.

[6]  Jean-Sébastien Coron,et al.  Practical Multilinear Maps over the Integers , 2013, CRYPTO.

[7]  Dan Boneh,et al.  Applications of Multilinear Forms to Cryptography , 2002, IACR Cryptol. ePrint Arch..

[8]  Yevgeniy Dodis,et al.  Efficient Construction of (Distributed) Verifiable Random Functions , 2003, Public Key Cryptography.

[9]  Mihir Bellare,et al.  Foundations of garbled circuits , 2012, CCS.

[10]  Dario Fiore,et al.  Uniqueness is a Different Story: Impossibility of Verifiable Random Functions from Trapdoor Permutations , 2012, IACR Cryptol. ePrint Arch..

[11]  Dan Boneh,et al.  Algebraic pseudorandom functions with improved efficiency from the augmented cascade , 2010, CCS '10.

[12]  Moses D. Liskov Updatable Zero-Knowledge Databases , 2005, ASIACRYPT.

[13]  Rafail Ostrovsky,et al.  Deniable Encryption , 1997, IACR Cryptol. ePrint Arch..

[14]  Brent Waters,et al.  Attribute-Based Encryption for Circuits from Multilinear Maps , 2012, CRYPTO.

[15]  Shafi Goldwasser,et al.  Functional Signatures and Pseudorandom Functions , 2014, Public Key Cryptography.

[16]  Brent Waters,et al.  Full Domain Hash from (Leveled) Multilinear Maps and Identity-Based Aggregate Signatures , 2013, CRYPTO.

[17]  Brent Waters,et al.  How to use indistinguishability obfuscation: deniable encryption, and more , 2014, IACR Cryptol. ePrint Arch..

[18]  Brent Waters,et al.  Candidate Indistinguishability Obfuscation and Functional Encryption for all Circuits , 2013, 2013 IEEE 54th Annual Symposium on Foundations of Computer Science.

[19]  Aggelos Kiayias,et al.  Delegatable pseudorandom functions and applications , 2013, IACR Cryptol. ePrint Arch..

[20]  Moni Naor,et al.  Number-theoretic constructions of efficient pseudo-random functions , 1997, Proceedings 38th Annual Symposium on Foundations of Computer Science.

[21]  Brent Waters,et al.  Constrained Pseudorandom Functions and Their Applications , 2013, ASIACRYPT.

[22]  Dario Fiore,et al.  Verifiable Random Functions: Relations to Identity-Based Key Encapsulation and New Constructions , 2013, Journal of Cryptology.

[23]  Dan Boneh,et al.  Efficient Selective-ID Secure Identity Based Encryption Without Random Oracles , 2004, IACR Cryptol. ePrint Arch..

[24]  Yevgeniy Dodis,et al.  A Verifiable Random Function with Short Proofs and Keys , 2005, Public Key Cryptography.

[25]  Brent Waters,et al.  Replacing a Random Oracle: Full Domain Hash From Indistinguishability Obfuscation , 2014, IACR Cryptol. ePrint Arch..

[26]  Melissa Chase,et al.  Simulatable VRFs with Applications to Multi-theorem NIZK , 2007, CRYPTO.

[27]  Georg Fuchsbauer,et al.  Policy-Based Signatures , 2013, IACR Cryptol. ePrint Arch..

[28]  Silvio Micali,et al.  Verifiable random functions , 1999, 40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039).

[29]  Silvio Micali,et al.  Soundness in the Public-Key Model , 2001, CRYPTO.

[30]  Craig Gentry,et al.  Candidate Multilinear Maps from Ideal Lattices , 2013, EUROCRYPT.

[31]  Dan Boneh,et al.  Short Signatures Without Random Oracles , 2004, EUROCRYPT.

[32]  Georg Fuchsbauer,et al.  Adaptive Security of Constrained PRFs , 2014, IACR Cryptol. ePrint Arch..

[33]  Brent Waters,et al.  Constructing Verifiable Random Functions with Large Input Spaces , 2010, EUROCRYPT.

[34]  Markulf Kohlweiss,et al.  Compact E-Cash and Simulatable VRFs Revisited , 2009, Pairing.