Natural selection of memory-one strategies for the iterated prisoner's dilemma.
暂无分享,去创建一个
[1] M. Nowak,et al. The evolution of stochastic strategies in the Prisoner's Dilemma , 1990 .
[2] J. Hofbauer,et al. Adaptive dynamics and evolutionary stability , 1990 .
[3] Josef Hofbauer,et al. The theory of evolution and dynamical systems , 1988 .
[4] R. Goldschmidt,et al. The material basis of evolution , 1941 .
[5] W. Hamilton,et al. The Evolution of Cooperation , 1984 .
[6] John G. Kemeny,et al. Finite Markov chains , 1960 .
[7] J. M. Smith,et al. The Logic of Animal Conflict , 1973, Nature.
[8] S. M. Verduyn Lunel,et al. Stochastic and spatial structures of dynamical systems , 1996 .
[9] Josef Hofbauer,et al. Evolutionary Games and Population Dynamics , 1998 .
[10] M. Nowak,et al. A strategy of win-stay, lose-shift that outperforms tit-for-tat in the Prisoner's Dilemma game , 1993, Nature.
[11] J M Smith,et al. Evolution and the theory of games , 1976 .
[12] T. Schopf. Models in Paleobiology , 1972 .
[13] J. Neumann,et al. Prisoner's Dilemma , 1993 .
[14] Martin A. Nowak,et al. Game-dynamical aspects of the prisoner's dilemma , 1989 .
[15] T. Clutton‐Brock,et al. Punishment in animal societies , 1995, Nature.
[16] Robert Axelrod,et al. The Evolution of Strategies in the Iterated Prisoner's Dilemma , 2001 .
[17] F. Poupaud. Derivation of a hydrodynamic system hierarchy for semiconductors from the Boltzmann equation , 1991 .