Retrospective approximation algorithms for the multidimensional stochastic root-finding problem

The stochastic root-finding problem (SRFP) is that of solving a system of q equations in q unknowns using only an oracle that provides estimates of the function values. This paper presents a family of algorithms to solve the multidimensional (q /spl ges/ 1) SRFP, generalizing Chen and Schmeiser's one-dimensional retrospective approximation (RA) family of algorithms. The fundamental idea used in the algorithms is to generate and solve, with increasing accuracy, a sequence of approximations to the SRFP. We focus on a specific member of the family, called the Bounding RA algorithm, which finds a sequence of polytopes that progressively decrease in size while approaching the solution. The algorithm converges almost surely and exhibits good practical performance with no user tuning of parameters, but no convergence proofs or numerical results are included here.

[1]  S. Jacobson,et al.  Techniques for simulation response optimization , 1989 .

[2]  Raghu Pasupathy,et al.  A Testbed of Simulation-Optimization Problems , 2006, Proceedings of the 2006 Winter Simulation Conference.

[3]  R. Pasupathy,et al.  Some issues in multivariate stochastic root finding , 2003, Proceedings of the 2003 Winter Simulation Conference, 2003..

[4]  L'EcuyerPierre,et al.  Global Stochastic Optimization with Low-Dispersion Point Sets , 2000 .

[5]  James R. Wilson,et al.  A revised simplex search procedure for stochastic simulation response-surface optimization , 1998, WSC '98.

[6]  M. Hossein Safizadeh,et al.  Optimization in simulation: Current issues and the future outlook , 1990 .

[7]  J. S. Ivey,et al.  Nelder-Mead simplex modifications for simulation optimization , 1996 .

[8]  Bruce W. Schmeiser,et al.  Retrospective approximation algorithms for stochastic root finding , 1994, Proceedings of Winter Simulation Conference.

[9]  James C. Spall,et al.  Introduction to stochastic search and optimization - estimation, simulation, and control , 2003, Wiley-Interscience series in discrete mathematics and optimization.

[10]  James M. Ortega,et al.  Iterative solution of nonlinear equations in several variables , 2014, Computer science and applied mathematics.

[11]  Bernard Delyon,et al.  Accelerated Stochastic Approximation , 1993, SIAM J. Optim..

[12]  J. Blum Multidimensional Stochastic Approximation Methods , 1954 .

[13]  Michael C. Fu,et al.  Optimization for Simulation: Theory vs. Practice , 2002 .

[14]  J. Spall Implementation of the simultaneous perturbation algorithm for stochastic optimization , 1998 .

[15]  Pierre L'Ecuyer,et al.  Global Stochastic Optimization with Low-Dispersion Point Sets , 1998, Oper. Res..

[16]  C. G. Broyden A Class of Methods for Solving Nonlinear Simultaneous Equations , 1965 .

[17]  Stephen M. Robinson,et al.  Sample-path optimization of convex stochastic performance functions , 1996, Math. Program..

[18]  J. H. Venter An extension of the Robbins-Monro procedure , 1967 .

[19]  S. Andradóttir A Scaled Stochastic Approximation Algorithm , 1996 .

[20]  Averill M. Law,et al.  Simulation Modeling and Analysis , 1982 .

[21]  H. Kushner,et al.  Stochastic Approximation and Recursive Algorithms and Applications , 2003 .

[22]  Raghu Pasupathy,et al.  On Choosing Parameters in Retrospective-Approximation Algorithms for Simulation-Optimization , 2006, Proceedings of the 2006 Winter Simulation Conference.

[23]  L. Schruben,et al.  A Review of Techniques for Simulation Optimization , 1986 .

[24]  James C. Spall,et al.  Stochastic optimization and the simultaneous perturbation method , 1999, WSC '99.

[25]  F. Downton Stochastic Approximation , 1969, Nature.

[26]  Alexander Shapiro,et al.  A simulation-based approach to two-stage stochastic programming with recourse , 1998, Math. Program..

[27]  Jason H. Goodfriend,et al.  Discrete Event Systems: Sensitivity Analysis and Stochastic Optimization by the Score Function Method , 1995 .

[28]  Hsin-Ming Chen Stochastic root finding in system design , 1994 .

[29]  John A. Nelder,et al.  A Simplex Method for Function Minimization , 1965, Comput. J..

[30]  Shane G. Henderson,et al.  Call Center Staffing with Simulation and Cutting Plane Methods , 2004, Ann. Oper. Res..

[31]  Huifen Chen,et al.  Stochastic root finding via retrospective approximation , 2001 .

[32]  Robert N. Rodriguez A guide to the Burr type XII distributions , 1977 .

[33]  Lee W. Schruben,et al.  Retrospective simulation response optimization , 1991, 1991 Winter Simulation Conference Proceedings..

[34]  Alexander Shapiro,et al.  Asymptotic analysis of stochastic programs , 1991, Ann. Oper. Res..

[35]  Sigrún Andradóttir,et al.  A review of simulation optimization techniques , 1998, 1998 Winter Simulation Conference. Proceedings (Cat. No.98CH36274).

[36]  Michael C. Fu,et al.  Feature Article: Optimization for simulation: Theory vs. Practice , 2002, INFORMS J. Comput..

[37]  Alexander Shapiro Simulation based optimization , 1996, Winter Simulation Conference.

[38]  Harold J. Kushner,et al.  wchastic. approximation methods for constrained and unconstrained systems , 1978 .

[39]  Peter Kall,et al.  Stochastic Programming , 1995 .

[40]  R. D. Murphy,et al.  Iterative solution of nonlinear equations , 1994 .

[41]  Tito Homem-de-Mello,et al.  Variable-sample methods for stochastic optimization , 2003, TOMC.

[42]  Alexander Shapiro,et al.  On the Rate of Convergence of Optimal Solutions of Monte Carlo Approximations of Stochastic Programs , 2000, SIAM J. Optim..

[43]  Michael C. Fu,et al.  Optimization via simulation: A review , 1994, Ann. Oper. Res..

[44]  R. Pasupathy,et al.  Retrospective approximation algorithms for the multidimensional stochastic root-finding problem , 2004 .

[45]  James C. Spall,et al.  Adaptive stochastic approximation by the simultaneous perturbation method , 2000, IEEE Trans. Autom. Control..

[46]  Charles Leake,et al.  Discrete Event Systems: Sensitivity Analysis and Stochastic Optimization by the Score Function Method , 1994 .

[47]  A. Ruszczynski Stochastic Programming Models , 2003 .

[48]  Sigrún Andradóttir,et al.  A projected stochastic approximation algorithm , 1991, 1991 Winter Simulation Conference Proceedings..

[49]  V. Fabian On Asymptotic Normality in Stochastic Approximation , 1968 .

[50]  Alexander Shapiro,et al.  Stochastic programming by Monte Carlo simulation methods , 2000 .