Obsessional Cliques: A Semantic Characterization of Bounded Time Complexity

We give a semantic characterization of bounded complexity proofs. We introduce the notion of obsessional clique in the relational model of linear logic and show that restricting the morphisms of the category RscrEscrLscr to obsessional cliques yields models of ELL and SLL. Conversely, we prove that these models are relatively complete: an LL proof whose interpretation is an obsessional clique is always an ELL/SLL proof. These results are achieved by introducing a system of ELL/SLL untyped proof-nets, which is both correct and complete with respect to elementary/polynomial time complexity

[1]  Patrick Lincoln,et al.  Linear logic , 1992, SIGA.

[2]  Rasmus Ejlers Møgelberg,et al.  Proceedings of the 22nd Annual IEEE Symposium on Logic in Computer Science , 2007 .

[3]  Yehoshua Bar-Hillel,et al.  The Intrinsic Computational Difficulty of Functions , 1969 .

[4]  Lorenzo Tortora de Falco Reseaux, coherence et experiences obsessionnelles , 2000 .

[5]  Martin Hofmann,et al.  Quantitative Models and Implicit Complexity , 2005, FSTTCS.

[6]  Andrzej S. Murawski,et al.  Discreet Games, Light Affine Logic and PTIME Computation , 2000, CSL.

[7]  Ronald Fagin Generalized first-order spectra, and polynomial. time recognizable sets , 1974 .

[8]  Daniel Leivant,et al.  Lambda Calculus Characterizations of Poly-Time , 1993, Fundam. Informaticae.

[9]  Andrea Asperti,et al.  Intuitionistic Light Affine Logic , 2002, TOCL.

[10]  Stephen A. Cook,et al.  The complexity of theorem-proving procedures , 1971, STOC.

[11]  Lorenzo Tortora de Falco,et al.  Obsessional experiments for linear logic proof-nets , 2003, Mathematical Structures in Computer Science.

[12]  Yves Lafont,et al.  Soft linear logic and polynomial time , 2004, Theor. Comput. Sci..

[13]  Roma TreVia Ostiense,et al.  Obsessional experiments for Linear Logic Proof-nets , 2001 .

[14]  Andre Scedrov,et al.  Bounded Linear Logic: A Modular Approach to Polynomial-Time Computability , 1992, Theor. Comput. Sci..

[15]  Jean-Yves Girard,et al.  Light Linear Logic , 1998, Inf. Comput..

[16]  Vincent Danos La Logique Linéaire appliquée à l'étude de divers processus de normalisation (principalement du Lambda-calcul) , 1990 .

[17]  外史 竹内 Bounded Arithmetic と計算量の根本問題 , 1996 .

[18]  Patrick Baillot Stratified coherence spaces: a denotational semantics for light linear logic , 2004, Theor. Comput. Sci..

[19]  Stephen A. Cook,et al.  A new recursion-theoretic characterization of the polytime functions , 1992, STOC '92.

[20]  Laurent Regnier,et al.  Lambda-calcul et reseaux , 1992 .

[21]  Andrea Asperti Light affine logic , 1998, Proceedings. Thirteenth Annual IEEE Symposium on Logic in Computer Science (Cat. No.98CB36226).

[22]  Vincent Danos,et al.  Linear logic and elementary time , 2003, Inf. Comput..

[23]  Kazushige Terui,et al.  On the Computational Complexity of Cut-Elimination in Linear Logic , 2003, ICTCS.

[24]  Brian F. Redmond Multiplexor Categories and Models of Soft Linear Logic , 2007, LFCS.