Developing the Analysis Methodology and Platform for Behaviorally Induced System Optimal Traffic Management

..................................................................................................................... 8

[1]  Hani S. Mahmassani,et al.  Time dependent, shortest-path algorithm for real-time intelligent vehicle highway system applications , 1993 .

[2]  J. Garvill,et al.  Expected car use reduction in response to structural travel demand management measures , 2010 .

[3]  Carlos F. Daganzo,et al.  TRANSPORTATION AND TRAFFIC THEORY , 1993 .

[4]  E. Martins,et al.  An algorithm for the ranking of shortest paths , 1993 .

[5]  Shanjiang Zhu,et al.  Do People Use the Shortest Path? An Empirical Test of Wardrop’s First Principle , 2015, PloS one.

[6]  Paul Schonfeld,et al.  Optimal Allocation of Truck Inspection Stations Based on k-Shortest Paths , 2013 .

[7]  Robert E. Tarjan,et al.  A quick method for finding shortest pairs of disjoint paths , 1984, Networks.

[9]  Sam Yagar CORQ-a model for predicting flows and queues in a road corridor , 1975 .

[10]  Terry L. Friesz,et al.  Dynamic Network Traffic Assignment Considered as a Continuous Time Optimal Control Problem , 1989, Oper. Res..

[11]  Haris N. Koutsopoulos,et al.  Calibration of Microscopic Traffic Simulation Models with Aggregate Data , 2004 .

[12]  Maria Grazia Scutellà,et al.  A new algorithm for reoptimizing shortest paths when the arc costs change , 2003, Oper. Res. Lett..

[13]  Michael Florian,et al.  Application of a simulation-based dynamic traffic assignment model , 2008, Eur. J. Oper. Res..

[14]  T. Lindvall ON A ROUTING PROBLEM , 2004, Probability in the Engineering and Informational Sciences.

[15]  Gang-Len Chang,et al.  An integrated model for estimating time-varying network origin–destination distributions , 1999 .

[16]  Jianmin Li,et al.  A Modified K-Shortest Paths Algorithm for Solving the Earliest Arrival Problem on the Time-Dependent Model of Transportation Systems , 2012 .

[17]  Giorgio Gallo,et al.  Reoptimization procedures in shortest path problem , 1980 .

[18]  W Reilly,et al.  HIGHWAY CAPACITY MANUAL 2000 , 1997 .

[19]  Taehyung Park,et al.  Estimation of dynamic origin-destination trip tables for a general network , 2001 .

[20]  Athanasios K. Ziliaskopoulos,et al.  Foundations of Dynamic Traffic Assignment: The Past, the Present and the Future , 2001 .

[21]  M. Jun The Economic Costs and Transport Benefits of Seoul’s Industrial Land Use Controls , 2012 .

[22]  Eric W. Weisstein Floyd-Warshall Algorithm , 2008 .

[23]  E. Queirós Vieira Martins An algorithm for ranking paths in acyclic networks , 1983 .

[24]  Pascal Fua,et al.  Ieee Transactions on Pattern Analysis and Machine Intelligence 1 Multiple Object Tracking Using K-shortest Paths Optimization , 2022 .

[25]  Hani S. Mahmassani,et al.  Dynamic Origin-Destination Demand Estimation with Multiday Link Traffic Counts for Planning Applications , 2003 .

[26]  Bin Ran,et al.  Calibration and Validation of a Dynamic Traffic Assignment Model , 2000 .

[27]  Yen-Liang Chen,et al.  An algorithm for finding the k quickest paths in a network , 1993, Comput. Oper. Res..

[28]  Robin Lindsey,et al.  DEPARTURE TIME AND ROUTE CHOICE FOR THE MORNING COMMUTE , 1990 .

[29]  Lei Zhang,et al.  Marginal-Cost Vehicle Mileage Fee , 2012 .

[30]  Nagui M. Rouphail,et al.  Assessing Uncertainties in Traffic Simulation: A Key Component in Model Calibration and Validation , 2004 .

[31]  Y. L. Chen,et al.  Finding the k Quickset Simple Paths in a Network , 1994, Inf. Process. Lett..

[32]  Michel Bierlaire,et al.  DynaMIT: a simulation-based system for traffic prediction and guidance generation , 1998 .

[33]  Xuesong Zhou,et al.  Evaluating Urban Downtown One-Way to Two-Way Street Conversion Using Multiple Resolution Simulation and Assignment Approach , 2007 .

[34]  D. Hearn,et al.  A first best toll pricing framework for variable demand traffic assignment problems , 2005 .

[35]  T. Gärling,et al.  Travel Demand Management Targeting Reduced Private Car Use: Effectiveness, Public Acceptability and Political Feasibility , 2007 .

[36]  I. Frisch An Algorithm for Vertex-pair Connectivity , 1967 .

[37]  Satoshi Fujii,et al.  What does a one-month free bus ticket do to habitual drivers? An experimental analysis of habit and attitude change , 2003 .

[38]  Mario Cools,et al.  Calibrating Activity-Based Models with External Origin-Destination Information , 2010 .

[39]  I. Ajzen,et al.  Choice of Travel Mode in the Theory of Planned Behavior: The Roles of Past Behavior, Habit, and Reasoned Action , 2003 .

[40]  David Eppstein,et al.  Finding the k Shortest Paths , 1999, SIAM J. Comput..

[41]  Erik T. Verhoef,et al.  External effects and social costs of road transport , 1994 .

[42]  J. Ben Rosen,et al.  Algorithms for the quickest path problem and the enumeration of quickest paths , 1991, Comput. Oper. Res..

[43]  C. Daganzo THE CELL TRANSMISSION MODEL.. , 1994 .

[44]  Terry L. Friesz,et al.  A Discrete Time, Nested Cost Operator Approach to the Dynamic Network User Equilibrium Problem , 1995, Transp. Sci..

[45]  Alexander Skabardonis,et al.  Guidelines for Calibration of Microsimulation Models: Framework and Applications , 2004 .

[46]  Hong Zheng,et al.  Evaluating active traffic and demand management strategies for congested tourism traffic corridor , 2011, 2011 14th International IEEE Conference on Intelligent Transportation Systems (ITSC).

[47]  Francesco Viti,et al.  New Gradient Approximation Method for Dynamic Origin–Destination Matrix Estimation on Congested Networks , 2011 .

[48]  David M. Kreps Intrinsic Motivation and Extrinsic Incentives , 1997 .

[49]  Toshihide Ibaraki,et al.  An efficient algorithm for K shortest simple paths , 1982, Networks.

[50]  Ennio Cascetta,et al.  Dynamic Estimators of Origin-Destination Matrices Using Traffic Counts , 1993, Transp. Sci..

[51]  Mehdi Ghatee,et al.  Multimodal K-shortest viable path problem in Tehran public transportation network and its solution applying ant colony and simulated annealing algorithms , 2012 .

[52]  P. Hughes,et al.  A PROBIT-BASED STOCHASTIC USER EQUILIBRIUM ASSIGNMENT MODEL , 1997 .

[53]  Hani S. Mahmassani,et al.  System performance and user response under real-time information in a congested traffic corridor , 1991 .

[54]  M. Bierlaire MEUSE: an origin-destination matrix estimator that exploits structure , 1995 .

[55]  Bhanu Prasad Mahanti,et al.  Aggregate calibration of microscopic traffic simulation models , 2004 .

[56]  Mark Campbell,et al.  Calibration and Application of a Simulation-Based Dynamic Traffic Assignment Model , 2004 .

[57]  André de Palma,et al.  Dynamic Model of Peak Period Traffic Congestion with Elastic Arrival Rates , 1986, Transp. Sci..

[58]  Donald B. Johnson,et al.  Efficient Algorithms for Shortest Paths in Sparse Networks , 1977, J. ACM.

[59]  Brian Lee Smith,et al.  Evaluation of DynaMIT - A Prototype Traffic Estimation and Prediction System , 2006 .

[60]  Aarni Perko,et al.  Implementation of algorithms for K shortest loopless paths , 1986, Networks.

[61]  Bruce Podobnik New Urbanism and the Generation of Social Capital: Evidence from Orenco Station , 2002 .

[62]  Mike Smith,et al.  A model for the dynamic system optimum traffic assignment problem , 1995 .

[63]  Andrés Marzal,et al.  A Lazy Version of Eppstein's K Shortest Paths Algorithm , 2003, WEA.

[64]  M. Bell Alternatives to Dial's logit assignment algorithm , 1995 .

[65]  G. J. Horne,et al.  Finding the K Least Cost Paths in an Acyclic Activity Network , 1980 .

[66]  E. Martins,et al.  A computational improvement for a shortest paths ranking algorithm , 1994 .

[67]  Asad J. Khattak,et al.  Calibration of Volume-Delay Functions for Traffic Assignment in Travel Demand Models , 2012 .

[68]  André de Palma,et al.  Traffic congestion pricing methodologies and technologies , 2011 .

[69]  Gen-Huey Chen,et al.  Algorithms for the constrained quickest path problem and the enumeration of quickest paths , 1994, Comput. Oper. Res..

[70]  A Ziliaskopoulos,et al.  A REGIONAL TRAFFIC SIMULATION/ASSIGNMENT MODEL FOR EVALUATION OF TRANSIT PERFORMANCE AND ASSET UTILIZATION: TIME DEPENDENT MULTIMODAL AND INTERMODAL ASSIGNMENT MODELS , 2004 .

[71]  Mecit Cetin,et al.  Calibration of BPR Function Based on Link Counts and Its Sensitivity to Varying Demand , 2013 .

[72]  Patrick T McCoy,et al.  Dynamic Late Merge–Control Concept for Work Zones on Rural Interstate Highways , 2001 .

[73]  Anders Peterson,et al.  A heuristic for the bilevel origin-destination-matrix estimation problem , 2008 .

[74]  M. Baucus Transportation Research Board , 1982 .

[75]  J. Y. Yen,et al.  Finding the K Shortest Loopless Paths in a Network , 2007 .

[76]  Hani S. Mahmassani,et al.  Multiple user classes real-time traffic assignment for online operations: A rolling horizon solution framework , 1995 .

[77]  Ahnont Wongseelashote,et al.  An algebra for determining all path-values in a network with application to K-shortest-paths problems , 1976, Networks.

[78]  Nils J. Nilsson,et al.  A Formal Basis for the Heuristic Determination of Minimum Cost Paths , 1968, IEEE Trans. Syst. Sci. Cybern..

[79]  Michael G.H. Bell,et al.  The Estimation of an Origin-Destination Matrix from Traffic Counts , 1983 .

[80]  Malachy Carey,et al.  Dynamic traffic assignment approximating the kinematic wave model: System optimum, marginal costs, externalities and tolls , 2012 .

[81]  Edsger W. Dijkstra,et al.  A note on two problems in connexion with graphs , 1959, Numerische Mathematik.

[82]  Enrique F. Castillo,et al.  Traffic Estimation and Optimal Counting Location Without Path Enumeration Using Bayesian Networks , 2008, Comput. Aided Civ. Infrastructure Eng..

[83]  Jerald Jariyasunant,et al.  Algorithm for Finding Optimal Paths in a Public Transit Network with Real-Time Data , 2011 .

[84]  Terry L. Friesz,et al.  A variational control formulation of the simultaneous route and departure-time choice equilibrium problem , 1993 .

[85]  Robert B. Dial,et al.  Algorithm 360: shortest-path forest with topological ordering [H] , 1969, CACM.

[86]  Hai Yang,et al.  Estimation of origin-destination matrices from link traffic counts on congested networks , 1992 .

[87]  Hani S. Mahmassani,et al.  System optimal and user equilibrium time-dependent traffic assignment in congested networks , 1995, Ann. Oper. Res..

[88]  Asma Munir Khan Intelligent infrastructure-based queue-end warning system for avoiding rear impacts , 2007 .

[89]  Santos Sánchez-Cambronero,et al.  Predicting traffic flow using Bayesian networks , 2008 .

[90]  Huapu Lu,et al.  A K-shortest-paths-based algorithm for stochastic traffic assignment model and comparison of computation precision with existing methods , 2005 .

[91]  RaphaelBertram,et al.  Correction to "A Formal Basis for the Heuristic Determination of Minimum Cost Paths" , 1972 .

[92]  Kyeong-Pyo Kang,et al.  Dynamic Late Merge Control at Highway Work Zones: Evaluation, Observations, and Suggestions , 2005 .

[93]  George L. Nemhauser,et al.  Optimality Conditions for a Dynamic Traffic Assignment Model , 1978 .

[94]  H. M. Zhang,et al.  On Path Marginal Cost Analysis and its Relation to Dynamic System-Optimal Traffic Assignment , 2007 .

[95]  S. Bekhor,et al.  Route Choice Models Used in the Stochastic User Equilibrium Problem: A Review , 2004 .

[96]  Hani S. Mahmassani,et al.  A structural state space model for real-time traffic origin–destination demand estimation and prediction in a day-to-day learning framework , 2007 .

[97]  Sang Nguyen,et al.  A dual simplex algorithm for finding all shortest paths , 1981, Networks.

[98]  I. Mayeres,et al.  THE MARGINAL EXTERNAL COSTS OF URBAN TRANSPORT , 1996 .

[99]  Eran Ben-Elia,et al.  Changing commuters' behavior using rewards: a study of rush-hour avoidance , 2011 .

[100]  Hong Zheng,et al.  Journal of Homeland Security and Emergency Management Evaluating Regional ContraFlow and Phased Evacuation Strategies for Texas Using a Large-Scale Dynamic Traffic Simulation and Assignment Approach , 2011 .

[101]  Justin Geistefeldt Temporary Hard Shoulder Use in Hesse – Effects on Traffic Flow and Road Safety , 2009 .

[102]  Yi-Chang Chiu,et al.  A new approach to calibrating time-dependent origin-destination departure profile for traffic simulation models , 2011, 2011 14th International IEEE Conference on Intelligent Transportation Systems (ITSC).

[103]  Antoine G. Hobeika,et al.  Parameter optimization methods for estimating dynamic origin-destination trip-tables , 1997 .

[104]  K. Cooke,et al.  The shortest route through a network with time-dependent internodal transit times , 1966 .

[105]  Francesco Viti,et al.  A density-based dynamic OD estimation method that reproduces within-day congestion dynamics , 2010, 13th International IEEE Conference on Intelligent Transportation Systems.

[106]  Nicholas Low,et al.  Rethinking the Cost of Traffic Congestion, Lessons from Melbourne's City Link Toll Roads , 2012 .

[107]  Panos G Michalopoulos,et al.  Practical Procedure for Calibrating Microscopic Traffic Simulation Models , 2003 .

[108]  Ismail Chabini,et al.  Discrete Dynamic Shortest Path Problems in Transportation Applications: Complexity and Algorithms with Optimal Run Time , 1998 .

[109]  Stuart E. Dreyfus,et al.  An Appraisal of Some Shortest-Path Algorithms , 1969, Oper. Res..

[110]  Haris N. Koutsopoulos,et al.  Calibration and Validation of Dynamic Traffic Assignment Systems , 2005 .

[111]  Peeta Srinivas,et al.  System optimal dynamic traffic assignment in congested networks with advanced information systems. , 1996 .

[112]  Joan L. Walker,et al.  Which Is the Biggest Carrot? Comparing Nontraditional Incentives for Demand Management , 2013 .

[113]  N. J. V. Zijpp,et al.  Path enumeration by finding the constrained K-shortest paths , 2005 .

[114]  Stella C. Dafermos,et al.  Traffic assignment problem for a general network , 1969 .

[115]  M. Florian,et al.  A COORDINATE DESCENT METHOD FOR THE BILEVEL O-D MATRIX ADJUSTMENT PROBLEM , 1992 .

[116]  Kuilin Zhang,et al.  Dynamic micro-assignment modeling approach for integrated multimodal urban corridor management , 2008 .

[117]  J. G. Wardrop,et al.  Some Theoretical Aspects of Road Traffic Research , 1952 .

[118]  Malachy Carey,et al.  A Method for Direct Estimation of Origin/Destination Trip Matrices , 1981 .

[119]  C. Jotin Khisty,et al.  Transportation Engineering: An Introduction , 1990 .

[120]  Hani S. Mahmassani,et al.  Perturbation Analysis Approach to the Evaluation of Simulated Path Travel Time Marginals: Application to System Optimal Dynamic Network Assignment , 2012 .

[121]  Takashi Akamatsu,et al.  Cyclic flows, Markov process and stochastic traffic assignment , 1996 .

[122]  Yixuan Li,et al.  Large-Scale Dynamic Traffic Assignment: Implementation Issues and Computational Analysis , 2004 .

[123]  E. Cascetta,et al.  A MODIFIED LOGIT ROUTE CHOICE MODEL OVERCOMING PATH OVERLAPPING PROBLEMS. SPECIFICATION AND SOME CALIBRATION RESULTS FOR INTERURBAN NETWORKS , 1996 .

[124]  J. W. Suurballe Disjoint paths in a network , 1974, Networks.

[125]  Athanasios K. Ziliaskopoulos,et al.  A Linear Programming Model for the Single Destination System Optimum Dynamic Traffic Assignment Problem , 2000, Transp. Sci..

[126]  Deepak K. Merchant,et al.  A Model and an Algorithm for the Dynamic Traffic Assignment Problems , 1978 .

[127]  M. Desrochers,et al.  A reoptimization algorithm for the shortest path problem with time windows , 1988 .

[128]  Kenneth Steiglitz,et al.  A new derivation of Frisch's algorithm for calculating vertex-pair connectivity , 1971 .

[129]  Yi-Chang Chiu,et al.  A Temporal Domain Decomposition Algorithmic Scheme for Large-Scale Dynamic Traffic Assignment , 2012 .

[130]  M. R. McCord,et al.  Urban transportation networks: Equilibrium analysis with mathematical programming methods: Yosef Sheffi. Prentice-Hall, Inc., Englewood Cliffs, NJ, U.S.A. 1985. 399 pp. + xvi. $40.95 , 1987 .

[131]  G. Currie Free Fare Incentives to Shift Rail Demand Peaks--Medium-term Impacts , 2011 .

[132]  Kenneth A. Small,et al.  THE SCHEDULING OF CONSUMER ACTIVITIES: WORK TRIPS , 1982 .

[133]  M. Ben-Akiva,et al.  Discrete choice analysis , 1989 .

[134]  H. Kunzi,et al.  Lectu re Notes in Economics and Mathematical Systems , 1975 .

[135]  Hong Sun,et al.  The K Shortest Transit Paths Choosing Algorithm in Stochastic Transit Network , 2008, RSKT.

[136]  Carlos F. Daganzo,et al.  THE CELL TRANSMISSION MODEL, PART II: NETWORK TRAFFIC , 1995 .

[137]  Yehoshua Perl,et al.  Finding Two Disjoint Paths Between Two Pairs of Vertices in a Graph , 1978, JACM.

[138]  Hossein Tavana,et al.  Internally-consistent estimation of dynamic network origin-destination flows from intelligent transportation systems data using bi-level optimization , 2001 .