Gray matter changes in asymptomatic C9orf72 and GRN mutation carriers

Frontotemporal dementia (FTD) is a neurodegenerative disease with a strong genetic basis. Understanding the structural brain changes during pre-symptomatic stages may allow for earlier diagnosis of patients suffering from FTD; therefore, we investigated asymptomatic members of FTD families with mutations in C9orf72 and granulin (GRN) genes. Clinically asymptomatic subjects from families with C9orf72 mutation (15 mutation carriers, C9orf72+; and 23 non-carriers, C9orf72−) and GRN mutations (9 mutation carriers, GRN+; and 15 non-carriers, GRN−) underwent structural neuroimaging (MRI). Cortical thickness and subcortical gray matter volumes were calculated using FreeSurfer. Group differences were evaluated, correcting for age, sex and years to mean age of disease onset within the subject's family. Mean age of C9orf72+ and C9orf72− were 42.6 ± 11.3 and 49.7 ± 15.5 years, respectively; while GRN+ and GRN− groups were 50.1 ± 8.7 and 53.2 ± 11.2 years respectively. The C9orf72+ group exhibited cortical thinning in the temporal, parietal and frontal regions, as well as reduced volumes of bilateral thalamus and left caudate compared to the entire group of mutation non-carriers (NC: C9orf72− and GRN− combined). In contrast, the GRN+ group did not show any significant differences compared to NC. C9orf72 mutation carriers demonstrate a pattern of reduced gray matter on MRI prior to symptom onset compared to GRN mutation carriers. These findings suggest that the preclinical course of FTD differs depending on the genetic basis and that the choice of neuroimaging biomarkers for FTD may need to take into account the specific genes involved in causing the disease.

[1]  B. Dubois,et al.  White matter lesions in FTLD: distinct phenotypes characterize GRN and C9ORF72 mutations , 2016, Neurology: Genetics.

[2]  Jonathan M. Bekisz,et al.  Cognitive decline and reduced survival in C9orf72 expansion frontotemporal degeneration and amyotrophic lateral sclerosis , 2012, Journal of Neurology, Neurosurgery & Psychiatry.

[3]  Moo K. Chung,et al.  General multivariate linear modeling of surface shapes using SurfStat , 2010, NeuroImage.

[4]  O. Hardiman,et al.  Neuroimaging patterns along the ALS-FTD spectrum: a multiparametric imaging study , 2017, Amyotrophic lateral sclerosis & frontotemporal degeneration.

[5]  M. Swash,et al.  El Escorial revisited: Revised criteria for the diagnosis of amyotrophic lateral sclerosis , 2000, Amyotrophic lateral sclerosis and other motor neuron disorders : official publication of the World Federation of Neurology, Research Group on Motor Neuron Diseases.

[6]  Andrew King,et al.  A distinct clinical, neuropsychological and radiological phenotype is associated with progranulin gene mutations in a large UK series. , 2008, Brain : a journal of neurology.

[7]  D Perani,et al.  Brain magnetic resonance imaging structural changes in a pedigree of asymptomatic progranulin mutation carriers. , 2008, Rejuvenation research.

[8]  A. Bokde,et al.  Multiparametric MRI study of ALS stratified for the C9orf72 genotype , 2013, Neurology.

[9]  D. Royall,et al.  The FAB: A frontal assessment battery at bedside , 2001, Neurology.

[10]  A M Dale,et al.  Measuring the thickness of the human cerebral cortex from magnetic resonance images. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[11]  M. P. van den Heuvel,et al.  Widespread structural brain involvement in ALS is not limited to the C9orf72 repeat expansion , 2016, Journal of Neurology, Neurosurgery & Psychiatry.

[12]  Giovanni B. Frisoni,et al.  Pattern of structural and functional brain abnormalities in asymptomatic granulin mutation carriers , 2014, Alzheimer's & Dementia.

[13]  Laura E. Danielian,et al.  Longitudinal imaging in C9orf72 mutation carriers: Relationship to phenotype , 2016, NeuroImage: Clinical.

[14]  C. Jack,et al.  Neuroimaging signatures of frontotemporal dementia genetics: C9ORF72, tau, progranulin and sporadics , 2012, Brain : a journal of neurology.

[15]  B. Boeve,et al.  Clinical, neuroimaging and neuropathological features of a new chromosome 9p-linked FTD-ALS family , 2010, Journal of Neurology, Neurosurgery & Psychiatry.

[16]  J. Pariente,et al.  A cluster of progranulin C157KfsX97 mutations in Southern Italy: clinical characterization and genetic correlations , 2017, Neurobiology of Aging.

[17]  David Heckerman,et al.  A Hexanucleotide Repeat Expansion in C9ORF72 Is the Cause of Chromosome 9p21-Linked ALS-FTD , 2011, Neuron.

[18]  Nick C Fox,et al.  Sensitivity of revised diagnostic criteria for the behavioural variant of frontotemporal dementia. , 2011, Brain : a journal of neurology.

[19]  S. Rombouts,et al.  Cognition and gray and white matter characteristics of presymptomatic C9orf72 repeat expansion , 2017, Neurology.

[20]  K. Talbot,et al.  What is the role of TDP-43 in C9orf72-related amyotrophic lateral sclerosis and frontemporal dementia? , 2016, Brain : a journal of neurology.

[21]  Guido F. Schauer,et al.  Neuroanatomical correlates of behavioural disorders in dementia. , 2005, Brain : a journal of neurology.

[22]  S. Folstein,et al.  "Mini-mental state". A practical method for grading the cognitive state of patients for the clinician. , 1975, Journal of psychiatric research.

[23]  Knut Engedal,et al.  Frontotemporal Dementia , 2016, Journal of geriatric psychiatry and neurology.

[24]  A. Dale,et al.  Cortical Surface-Based Analysis II: Inflation, Flattening, and a Surface-Based Coordinate System , 1999, NeuroImage.

[25]  J. Cummings,et al.  The Montreal Cognitive Assessment, MoCA: A Brief Screening Tool For Mild Cognitive Impairment , 2005, Journal of the American Geriatrics Society.

[26]  H. Feldman,et al.  Early Neuropsychological Characteristics of Progranulin Mutation Carriers , 2014, Journal of the International Neuropsychological Society.

[27]  Bruce L. Miller,et al.  Expanded GGGGCC Hexanucleotide Repeat in Noncoding Region of C9ORF72 Causes Chromosome 9p-Linked FTD and ALS , 2011, Neuron.

[28]  Nick C Fox,et al.  Frontotemporal dementia with the C9ORF72 hexanucleotide repeat expansion: clinical, neuroanatomical and neuropathological features , 2012, Alzheimer's & Dementia.

[29]  Susan Byrne,et al.  Basal ganglia involvement in amyotrophic lateral sclerosis , 2013, Neurology.

[30]  J. Veldink,et al.  Subcortical structures in amyotrophic lateral sclerosis , 2015, Neurobiology of Aging.

[31]  Howard J. Rosen,et al.  Neuroanatomical correlates of impaired recognition of emotion in dementia , 2006, Neuropsychologia.

[32]  B. Miller,et al.  Classification of primary progressive aphasia and its variants , 2011, Neurology.

[33]  Elena Prieto,et al.  Cortical atrophy and language network reorganization associated with a novel progranulin mutation. , 2009, Cerebral cortex.

[34]  D. Louis Collins,et al.  Symmetric Atlasing and Model Based Segmentation: An Application to the Hippocampus in Older Adults , 2006, MICCAI.

[35]  R. Petersen,et al.  Plasma progranulin levels predict progranulin mutation status in frontotemporal dementia patients and asymptomatic family members , 2009, Brain : a journal of neurology.

[36]  B Miller,et al.  Clinical and pathological diagnosis of frontotemporal dementia: report of the Work Group on Frontotemporal Dementia and Pick's Disease. , 2001, Archives of neurology.

[37]  C. Jack,et al.  Frontal asymmetry in behavioral variant frontotemporal dementia: clinicoimaging and pathogenetic correlates , 2013, Neurobiology of Aging.

[38]  S. Ourselin,et al.  Patterns of gray matter atrophy in genetic frontotemporal dementia: results from the GENFI study , 2018, Neurobiology of Aging.

[39]  H. Vankova Mini Mental State , 2010 .

[40]  W. Kamphorst,et al.  Distinct genetic forms of frontotemporal dementia , 2008, Neurology.

[41]  Jörn Diedrichsen,et al.  Imaging the deep cerebellar nuclei: A probabilistic atlas and normalization procedure , 2011, NeuroImage.

[42]  S. Melquist,et al.  Mutations in progranulin cause tau-negative frontotemporal dementia linked to chromosome 17 , 2006, Nature.

[43]  Alain Trouvé,et al.  Computing Large Deformation Metric Mappings via Geodesic Flows of Diffeomorphisms , 2005, International Journal of Computer Vision.

[44]  L. Naccache,et al.  Extensive white matter involvement in patients with frontotemporal lobar degeneration: think progranulin. , 2014, JAMA neurology.

[45]  Anders M. Dale,et al.  Cortical Surface-Based Analysis I. Segmentation and Surface Reconstruction , 1999, NeuroImage.

[46]  Howard J. Rosen,et al.  Network degeneration and dysfunction in presymptomatic C9ORF72 expansion carriers , 2016, NeuroImage: Clinical.

[47]  V. Sossi,et al.  Anterior brain glucose hypometabolism predates dementia in progranulin mutation carriers , 2013, Neurology.

[48]  A. Kertesz,et al.  The Frontal Behavioral Inventory in the differential diagnosis of frontotemporal dementia , 2000, Journal of the International Neuropsychological Society.

[49]  Jörn Diedrichsen,et al.  A probabilistic MR atlas of the human cerebellum , 2009, NeuroImage.

[50]  C R Jack,et al.  Voxel-based morphometry patterns of atrophy in FTLD with mutations in MAPT or PGRN , 2009, Neurology.

[51]  M. Jorge Cardoso,et al.  Patterns of regional cerebellar atrophy in genetic frontotemporal dementia , 2016, NeuroImage: Clinical.

[52]  A. Levy,et al.  A Canadian Cohort Study of Cognitive Impairment and Related Dementias (ACCORD): Study Methods and Baseline Results , 2003, Neuroepidemiology.

[53]  C. Derouesné [Mini-mental state examination]. , 2001, Revue neurologique.

[54]  S. Melquist,et al.  Mutations in progranulin are a major cause of ubiquitin-positive frontotemporal lobar degeneration. , 2006, Human molecular genetics.

[55]  D. Geschwind,et al.  Frontotemporal dementia due to C9ORF72 mutations , 2012, Neurology.

[56]  C. Duijn,et al.  Null mutations in progranulin cause ubiquitin-positive frontotemporal dementia linked to chromosome 17q21 , 2006, Nature.

[57]  Xiao-dong Pan,et al.  Clinic, neuropathology and molecular genetics of frontotemporal dementia: a mini-review , 2013, Translational Neurodegeneration.

[58]  David T. Jones,et al.  Characterization of frontotemporal dementia and/or amyotrophic lateral sclerosis associated with the GGGGCC repeat expansion in C9ORF72 , 2012, Brain : a journal of neurology.

[59]  S. Pereson,et al.  A C9orf72 promoter repeat expansion in a Flanders-Belgian cohort with disorders of the frontotemporal lobar degeneration-amyotrophic lateral sclerosis spectrum: a gene identification study , 2012, The Lancet Neurology.

[60]  Sébastien Ourselin,et al.  Distinct profiles of brain atrophy in frontotemporal lobar degeneration caused by progranulin and tau mutations☆ , 2010, NeuroImage.

[61]  Veronica Redaelli,et al.  Presymptomatic cognitive and neuroanatomical changes in genetic frontotemporal dementia in the Genetic Frontotemporal dementia Initiative (GENFI) study: a cross-sectional analysis , 2015, The Lancet Neurology.