The Italian elastocaloric rotary air conditioner: numerical modelling for optimal design and enhanced energy performances

[1]  A. Greco,et al.  The development of an experimental prototype for electronic circuits cooling using elastocaloric effect: a FEM comparison between different configurations , 2022, Applied Thermal Engineering.

[2]  K. Bartholomé,et al.  Modeling of an Elastocaloric Cooling System for Determining Efficiency , 2022, Energies.

[3]  C. Esling,et al.  A first-principle assisted framework for designing high elastocaloric Ni–Mn-based magnetic shape memory alloy , 2022, Journal of Materials Science & Technology.

[4]  S. Yao,et al.  Enhancing cooling performance of NiTi elastocaloric tube refrigerant via internal grooving , 2022, Applied Thermal Engineering.

[5]  E. Defay,et al.  Electrocaloric Coolers: A Review , 2022, Advanced Electronic Materials.

[6]  Suxin Qian,et al.  A compact elastocaloric refrigerator , 2022, Innovation.

[7]  A. Greco,et al.  The optimization of the energy performances of a single bunch of elastocaloric elements to be employed in an experimental device , 2021, Thermal Science and Engineering Progress.

[8]  G. Fang,et al.  Elastocaloric cooling of shape memory alloys: A review , 2021 .

[9]  A. Greco,et al.  Numerical Optimization of a Single Bunch of NiTi Wires to Be Placed in an Elastocaloric Experimental Device: Preliminary Results , 2021, Magnetochemistry.

[10]  Zunfeng Liu,et al.  Twist-based cooling of polyvinylidene difluoride for mechanothermochromic fibers , 2020 .

[11]  A. Greco,et al.  Electrocaloric Cooling: A Review of the Thermodynamic Cycles, Materials, Models, and Devices , 2020, Magnetochemistry.

[12]  R. Snodgrass,et al.  A multistage elastocaloric refrigerator and heat pump with 28 K temperature span , 2019, Scientific Reports.

[13]  Jaka Tušek,et al.  Elastocaloric Cooling: State-of-the-art and Future Challenges in Designing Regenerative Elastocaloric Devices , 2019, Strojniški vestnik – Journal of Mechanical Engineering.

[14]  C. Aprea,et al.  A review of the state of the art of solid-state caloric cooling processes at room-temperature before 2019 , 2019, International Journal of Refrigeration.

[15]  Angelo Maiorino,et al.  Enhancing the Heat Transfer in an Active Barocaloric Cooling System Using Ethylene-Glycol Based Nanofluids as Secondary Medium , 2019, Energies.

[16]  C. Aprea,et al.  The environmental impact of solid-state materials working in an active caloric refrigerator compared to a vapor compression cooler , 2018, International Journal of Heat and Technology.

[17]  C. Aprea,et al.  Solid-state refrigeration: A comparison of the energy performances of caloric materials operating in an active caloric regenerator , 2018, Energy.

[18]  A. Schütze,et al.  NiTi-Based Elastocaloric Cooling on the Macroscale: From Basic Concepts to Realization , 2018, Energy Technology.

[19]  M. Kohl,et al.  Elastocaloric Cooling on the Miniature Scale: A Review on Materials and Device Engineering , 2018, Energy Technology.

[20]  C. Aprea,et al.  Energy performances and numerical investigation of solid-state magnetocaloric materials used as refrigerant in an active magnetic regenerator , 2018, Thermal Science and Engineering Progress.

[21]  Wei Li,et al.  The elastocaloric effect of Ni50.8Ti49.2 shape memory alloys , 2018 .

[22]  Jianlin Yu,et al.  Numerical modeling of an active elastocaloric regenerator refrigerator with phase transformation kinetics and the matching principle for materials selection , 2017 .

[23]  K. Engelbrecht,et al.  A regenerative elastocaloric device: experimental results , 2017 .

[24]  F. Wendler,et al.  SMA foil-based elastocaloric cooling: from material behavior to device engineering , 2017 .

[25]  C. Aprea,et al.  Analyzing the energetic performances of AMR regenerator working with different magnetocaloric materials: Investigations and viewpoints , 2017 .

[26]  E. A. Heath Amendment to the Montreal Protocol on Substances that Deplete the Ozone Layer (Kigali Amendment) , 2017, International Legal Materials.

[27]  K. Engelbrecht,et al.  Understanding the Thermodynamic Properties of the Elastocaloric Effect Through Experimentation and Modelling , 2016, Shape Memory and Superelasticity.

[28]  M. Kohl,et al.  TiNi-based films for elastocaloric microcooling— Fatigue life and device performance , 2016 .

[29]  J. Cui,et al.  A review of elastocaloric cooling: materials, cycles and system integrations. , 2016 .

[30]  Reinhard Radermacher,et al.  Performance enhancement of a compressive thermoelastic cooling system using multi-objective optimization and novel designs , 2015 .

[31]  Lars Pilgaard Mikkelsen,et al.  The Elastocaloric Effect: A Way to Cool Efficiently , 2015 .

[32]  Stefan Seelecke,et al.  Scientific test setup for investigation of shape memory alloy based elastocaloric cooling processes , 2015 .

[33]  Nini Pryds,et al.  Elastocaloric effect of Ni-Ti wire for application in a cooling device , 2015 .

[34]  M. Kohl,et al.  Evolution of temperature profiles in TiNi films for elastocaloric cooling , 2014 .

[35]  X. Moya,et al.  Caloric materials near ferroic phase transitions. , 2014, Nature materials.

[36]  Marko Ožbolt,et al.  Electrocaloric refrigeration: Thermodynamics, state of the art and future perspectives , 2014 .

[37]  M. Wuttig,et al.  Demonstration of high efficiency elastocaloric cooling with large ΔT using NiTi wires , 2012 .

[38]  H. Emmerich,et al.  Caloric Effects in Ferroic Materials: New Concepts for Cooling , 2012 .

[39]  L. Mañosa,et al.  Elastocaloric effect associated with the martensitic transition in shape-memory alloys. , 2008, Physical review letters.

[40]  C. Aprea,et al.  The use of barocaloric effect for energy saving in a domestic refrigerator with ethylene-glycol based nanofluids: A numerical analysis and a comparison with a vapor compression cooler , 2020 .

[41]  C. Aprea,et al.  The employment of caloric-effect materials for solid-state heat pumping , 2020, International Journal of Refrigeration.

[42]  A. Schütze,et al.  Numerical simulation and experimental investigation of the elastocaloric cooling effect in sputter-deposited TiNiCuCo thin films , 2018 .

[43]  Stefan Seelecke,et al.  Shape memory alloy actuators in smart structures: Modeling and simulation , 2004 .