2-D Tucker is PPA complete
暂无分享,去创建一个
[1] Xiaotie Deng,et al. Understanding PPA-Completeness , 2016, Electron. Colloquium Comput. Complex..
[2] Robert M. Freund,et al. Variable Dimension Complexes Part I: Basic Theory , 2015, Math. Oper. Res..
[3] Robert M. Freund,et al. Variable Dimension Complexes Part II: A Unified Approach to Some Combinatorial Lemmas in Topology , 2015, Math. Oper. Res..
[4] Samuel R. Buss,et al. Short Proofs of the Kneser-Lovász Coloring Principle , 2015, ICALP.
[5] Emil Jeřábek. Integer factoring and modular square roots , 2012, J. Comput. Syst. Sci..
[6] Dömötör Pálvölgyi,et al. 2D-TUCKER Is PPAD-Complete , 2009, WINE.
[7] J. Matousek,et al. Using the Borsuk-Ulam Theorem: Lectures on Topological Methods in Combinatorics and Geometry , 2007 .
[8] Xiaotie Deng,et al. Settling the complexity of computing two-player Nash equilibria , 2007, JACM.
[9] Xiaotie Deng,et al. Settling the Complexity of Two-Player Nash Equilibrium , 2006, 2006 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS'06).
[10] Samuel R. Buss,et al. Polynomial-size Frege and resolution proofs of st-connectivity and Hex tautologies , 2006, Theor. Comput. Sci..
[11] Miklos Santha,et al. Locally 2-Dimensional Sperner Problems Complete for the Polynomial Parity Argument Classes , 2006, CIAC.
[12] Paul W. Goldberg,et al. The complexity of computing a Nash equilibrium , 2006, STOC '06.
[13] G. Ziegler,et al. Generalized Kneser coloring theorems with combinatorial proofs , 2001, math/0103146.
[14] Michelangelo Grigni,et al. A Sperner lemma complete for PPA , 2001, Inf. Process. Lett..
[15] Russell Impagliazzo,et al. The relative complexity of NP search problems , 1995, STOC '95.
[16] Christos H. Papadimitriou,et al. On the Complexity of the Parity Argument and Other Inefficient Proofs of Existence , 1994, J. Comput. Syst. Sci..
[17] Michael J. Todd,et al. A Constructive Proof of Tucker's Combinatorial Lemma , 1981, J. Comb. Theory, Ser. A.
[18] Xiaotie Deng,et al. Octahedral Tucker is PPA-Complete , 2017, Electron. Colloquium Comput. Complex..
[19] Jirí Matousek,et al. A Combinatorial Proof of Kneser’s Conjecture* , 2004, Comb..
[20] A. Thomason. Hamiltonian Cycles and Uniquely Edge Colourable Graphs , 1978 .
[21] Xiaotie Deng,et al. Direction Preserving Zero Point Computing and Applications ( Extended Abstract ) , 2022 .
[22] Electronic Colloquium on Computational Complexity, Report No. 37 (2006) On the Complexity of 2D Discrete Fixed Point Problem , 2022 .
[23] Eth Zentrum,et al. A Combinatorial Proof of Kneser's Conjecture , 2022 .