2-D Tucker is PPA complete

[1]  Xiaotie Deng,et al.  Understanding PPA-Completeness , 2016, Electron. Colloquium Comput. Complex..

[2]  Robert M. Freund,et al.  Variable Dimension Complexes Part I: Basic Theory , 2015, Math. Oper. Res..

[3]  Robert M. Freund,et al.  Variable Dimension Complexes Part II: A Unified Approach to Some Combinatorial Lemmas in Topology , 2015, Math. Oper. Res..

[4]  Samuel R. Buss,et al.  Short Proofs of the Kneser-Lovász Coloring Principle , 2015, ICALP.

[5]  Emil Jeřábek Integer factoring and modular square roots , 2012, J. Comput. Syst. Sci..

[6]  Dömötör Pálvölgyi,et al.  2D-TUCKER Is PPAD-Complete , 2009, WINE.

[7]  J. Matousek,et al.  Using the Borsuk-Ulam Theorem: Lectures on Topological Methods in Combinatorics and Geometry , 2007 .

[8]  Xiaotie Deng,et al.  Settling the complexity of computing two-player Nash equilibria , 2007, JACM.

[9]  Xiaotie Deng,et al.  Settling the Complexity of Two-Player Nash Equilibrium , 2006, 2006 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS'06).

[10]  Samuel R. Buss,et al.  Polynomial-size Frege and resolution proofs of st-connectivity and Hex tautologies , 2006, Theor. Comput. Sci..

[11]  Miklos Santha,et al.  Locally 2-Dimensional Sperner Problems Complete for the Polynomial Parity Argument Classes , 2006, CIAC.

[12]  Paul W. Goldberg,et al.  The complexity of computing a Nash equilibrium , 2006, STOC '06.

[13]  G. Ziegler,et al.  Generalized Kneser coloring theorems with combinatorial proofs , 2001, math/0103146.

[14]  Michelangelo Grigni,et al.  A Sperner lemma complete for PPA , 2001, Inf. Process. Lett..

[15]  Russell Impagliazzo,et al.  The relative complexity of NP search problems , 1995, STOC '95.

[16]  Christos H. Papadimitriou,et al.  On the Complexity of the Parity Argument and Other Inefficient Proofs of Existence , 1994, J. Comput. Syst. Sci..

[17]  Michael J. Todd,et al.  A Constructive Proof of Tucker's Combinatorial Lemma , 1981, J. Comb. Theory, Ser. A.

[18]  Xiaotie Deng,et al.  Octahedral Tucker is PPA-Complete , 2017, Electron. Colloquium Comput. Complex..

[19]  Jirí Matousek,et al.  A Combinatorial Proof of Kneser’s Conjecture* , 2004, Comb..

[20]  A. Thomason Hamiltonian Cycles and Uniquely Edge Colourable Graphs , 1978 .

[21]  Xiaotie Deng,et al.  Direction Preserving Zero Point Computing and Applications ( Extended Abstract ) , 2022 .

[22]  Electronic Colloquium on Computational Complexity, Report No. 37 (2006) On the Complexity of 2D Discrete Fixed Point Problem , 2022 .

[23]  Eth Zentrum,et al.  A Combinatorial Proof of Kneser's Conjecture , 2022 .