A Brief Introduction to Robust Bilevel Optimization

. Bilevel optimization is a powerful tool for modeling hierarchical decision making processes. However, the resulting problems are challenging to solve—both in theory and practice. Fortunately, there have been significant algorithmic advances in the field so that we can solve much larger and also more complicated problems today compared to what was possible to solve two decades ago. This results in more and more challenging bilevel problems that researchers try to solve today. In this article, we give a brief introduction to one of these more challenging classes of bilevel problems: bilevel optimization under uncertainty using robust optimization techniques. To this end, we briefly state different versions of uncertain bilevel problems that result from different levels of cooperation of the follower as well as on when the uncertainty is revealed. We highlight these concepts using an academic example and discuss recent results from the literature concerning complexity as well as solution approaches. Finally, we discuss that the sources of uncertainty in bilevel optimization are much richer than in single-level optimization and, to this end, introduce the concept of decision uncertainty.

[1]  C. Buchheim,et al.  The robust bilevel continuous knapsack problem with uncertain coefficients in the follower’s objective , 2019, J. Glob. Optim..

[2]  I. Ljubić,et al.  A survey on bilevel optimization under uncertainty , 2023, Eur. J. Oper. Res..

[3]  I. Ljubić,et al.  Exact Methods for Discrete Γ -Robust Interdiction Problems with an Application to the Bilevel Knapsack Problem , 2022 .

[4]  Martin Schmidt,et al.  A robust approach for modeling limited observability in bilevel optimization , 2021, Oper. Res. Lett..

[5]  Martin Schmidt,et al.  A Survey on Mixed-Integer Programming Techniques in Bilevel Optimization , 2021, EURO J. Comput. Optim..

[6]  Christoph Buchheim,et al.  On the Complexity of Robust Bilevel Optimization With Uncertain Follower's Objective , 2021, Oper. Res. Lett..

[7]  Rosario Scatamacchia,et al.  An exact approach for the bilevel knapsack problem with interdiction constraints and extensions , 2020, Math. Program..

[8]  Oleg A. Prokopyev,et al.  On Bilevel Optimization with Inexact Follower , 2020, Decis. Anal..

[9]  Stephan Dempe,et al.  Bilevel Optimization: Theory, Algorithms, Applications and a Bibliography , 2020, Bilevel Optimization.

[10]  Luce Brotcorne,et al.  Near-optimal Robust Bilevel Optimization , 2019, ArXiv.

[11]  Matteo Fischetti,et al.  Interdiction Games and Monotonicity, with Application to Knapsack Problems , 2019, INFORMS J. Comput..

[12]  C. Buchheim,et al.  The bilevel continuous knapsack problem with uncertain follower's objective , 2019 .

[13]  Matteo Fischetti,et al.  A dynamic reformulation heuristic for Generalized Interdiction Problems , 2017, Eur. J. Oper. Res..

[14]  Jonathan Cole Smith,et al.  A class of algorithms for mixed-integer bilevel min–max optimization , 2015, Journal of Global Optimization.

[15]  Gerhard J. Woeginger,et al.  Bilevel Knapsack with Interdiction Constraints , 2016, INFORMS J. Comput..

[16]  Gerhard J. Woeginger,et al.  A Complexity and Approximability Study of the Bilevel Knapsack Problem , 2013, IPCO.

[17]  Berç Rustem,et al.  Pessimistic Bilevel Optimization , 2013, SIAM J. Optim..

[18]  Boris Goldengorin,et al.  Handbook of combinatorial optimization , 2013 .

[19]  Constantine Caramanis,et al.  Theory and Applications of Robust Optimization , 2010, SIAM Rev..

[20]  T. Ralphs,et al.  Interdiction and discrete bilevel linear programming , 2011 .

[21]  Antonio Alonso Ayuso,et al.  Introduction to Stochastic Programming , 2009 .

[22]  Laurent El Ghaoui,et al.  Robust Optimization , 2021, ICORES.

[23]  Ted K. Ralphs,et al.  A Branch-and-cut Algorithm for Integer Bilevel Linear Programs , 2009 .

[24]  Deeparnab Chakrabarty,et al.  Knapsack Problems , 2008 .

[25]  A. Ben-Tal,et al.  Adjustable robust solutions of uncertain linear programs , 2004, Math. Program..

[26]  Melvyn Sim,et al.  The Price of Robustness , 2004, Oper. Res..

[27]  Melvyn Sim,et al.  Robust discrete optimization and network flows , 2003, Math. Program..

[28]  Stephan Dempe,et al.  Foundations of Bilevel Programming , 2002 .

[29]  Arkadi Nemirovski,et al.  Robust Convex Optimization , 1998, Math. Oper. Res..

[30]  E.E.C. van Damme,et al.  Games with imperfectly observable commitment , 1997 .

[31]  Mallozzi Lina,et al.  HIERARCHICAL SYSTEMS WITH WEIGHTED REACTION SET , 1996 .

[32]  K. Bagwell Commitment and observability in games , 1995 .

[33]  Abdelmalek Aboussoror,et al.  Strong-weak Stackelberg Problems in Finite Dimensional Spaces , 1995 .

[34]  Pierre Hansen,et al.  New Branch-and-Bound Rules for Linear Bilevel Programming , 1989, SIAM J. Sci. Comput..

[35]  Robert G. Jeroslow,et al.  The polynomial hierarchy and a simple model for competitive analysis , 1985, Math. Program..

[36]  José Fortuny-Amat,et al.  A Representation and Economic Interpretation of a Two-Level Programming Problem , 1981 .

[37]  Allen L. Soyster,et al.  Technical Note - Convex Programming with Set-Inclusive Constraints and Applications to Inexact Linear Programming , 1973, Oper. Res..

[38]  Jerome Bracken,et al.  Mathematical Programs with Optimization Problems in the Constraints , 1973, Oper. Res..

[39]  Heinrich von Stackelberg,et al.  Stackelberg (Heinrich von) - The Theory of the Market Economy, translated from the German and with an introduction by Alan T. PEACOCK. , 1953 .

[40]  H. Stackelberg,et al.  Marktform und Gleichgewicht , 1935 .