Quantification of model uncertainty for a state-space system

In this communication, the uncertainty domain determination problem for multi-input multi-output systems described with a linear time-invariant state-space representation is adressed. The developed method is based on a two-step approach. The first step consists in estimating the nominal model using a particular least-squares subspace algorithm. Then, the uncertainty domains are described by using a bounded error approach. Simulations are used to highlight the performance of the method.

[1]  Alessandro Chiuso,et al.  Consistency analysis of some closed-loop subspace identification methods , 2005, Autom..

[2]  Thierry Poinot,et al.  System identification and uncertainty domain determination: a subspace-based approach , 2010, Proceedings of the 2010 American Control Conference.

[3]  Graham C. Goodwin,et al.  Estimated Transfer Functions with Application to Model Order Selection , 1992 .

[4]  Stéphane Lecoeuche,et al.  Propagator-based methods for recursive subspace model identification , 2008, Signal Process..

[5]  Gilles Y. Delisle,et al.  Spatial analysis using new properties of the cross-spectral matrix , 1991, IEEE Trans. Signal Process..

[6]  V. Verdult,et al.  Filtering and System Identification: A Least Squares Approach , 2007 .

[7]  P. Poignet,et al.  EXPERIMENTAL PARALLEL ROBOT DYNAMIC MODEL EVALUATION WITH SET MEMBERSHIP ESTIMATION , 2006 .

[8]  Lennart Ljung,et al.  Identification, Model Validation and Control , 1997 .

[9]  Yih-Fang Huang,et al.  Set-membership identification for adaptive equalization , 1995, 38th Midwest Symposium on Circuits and Systems. Proceedings.

[10]  Michel Verhaegen,et al.  Fast-array Recursive Closed-loop Subspace Model Identification , 2009 .

[11]  Alex Simpkins,et al.  System Identification: Theory for the User, 2nd Edition (Ljung, L.; 1999) [On the Shelf] , 2012, IEEE Robotics & Automation Magazine.

[12]  Patrick Dewilde,et al.  Subspace model identification Part 1. The output-error state-space model identification class of algorithms , 1992 .

[13]  C. Baron Contribution à l'estimation de paramètres physiques à l'aide de modèles d'ordre réduit , 2003 .

[14]  M. Milanese Model Quality Evaluation in Identification , 1997 .

[15]  Stéphane Lecoeuche,et al.  On-line structured subspace identification with application to switched linear systems , 2009, Int. J. Control.

[16]  Lennart Ljung,et al.  Comparing different approaches to model error modeling in robust identification , 2002, Autom..

[17]  Graham C. Goodwin,et al.  Estimation of Model Quality , 1994 .

[18]  Joe Brewer,et al.  Kronecker products and matrix calculus in system theory , 1978 .

[19]  Alessandro Chiuso,et al.  The role of vector autoregressive modeling in predictor-based subspace identification , 2007, Autom..

[20]  Torben Knudsen Consistency analysis of subspace identification methods based on a linear regression approach , 2001, Autom..

[21]  D. K. De Vries,et al.  Identification of model uncertainty for control design , 1994 .

[22]  Laura Giarré,et al.  Identification and Model Quality Evaluation , 1997 .

[23]  Gustavo Belforte,et al.  Parameter estimation algorithms for a set-membership description of uncertainty , 1990, Autom..

[24]  J. W. Van Wingerden,et al.  Control of wind turbines with 'Smart' rotors : Proof of concept & LPV subspace identification , 2008 .

[25]  J. Norton,et al.  Bounding Approaches to System Identification , 1996 .

[26]  Lennart Ljung,et al.  Model Validation and Model Error Modeling , 1999 .

[27]  Manfred Deistler,et al.  Statistical analysis of novel subspace identification methods , 1996, Signal Process..