A global climatological model of extreme geomagnetic field fluctuations

This paper presents a multi-parameter global statistical model of extreme horizontal geomagnetic field fluctuations (dBH/dt), which are a useful input to models assessing the risk of geomagnetically induced currents in ground infrastructure. Generalised Pareto (GP) distributions were fitted to 1-min measurements of |dBH/dt| from 125 magnetometers (with an average of 28 years of data per site) and return levels (RL) predicted for return periods (RP) between 5 and 500 years. Analytical functions characterise the profiles of maximum-likelihood GP model parameters and the derived RLs as a function of corrected geomagnetic latitude, λ. A sharp peak in both the GP shape parameter and the RLs is observed at |λ| = 53° in both hemispheres, indicating a sharp equatorward limit of the auroral electrojet region. RLs also increase strongly in the dayside region poleward of the polar cusp (|λ| > 75°) for RPs > 100 years. We describe how the GP model may be further refined by modelling the probability of occurrences of |dBH/dt| exceeding the 99.97th percentile as a function of month, magnetic local time, and the direction of the field fluctuation, dBH, and demonstrate that these patterns of occurrence align closely to known patterns of auroral substorm onsets, ULF Pc5 wave activity, and (storm) sudden commencement impacts. Changes in the occurrence probability profiles with the interplanetary magnetic field (IMF) orientation reveal further details of the nature of the ionospheric currents driving extreme |dBH/dt| fluctuations, such as the changing location of the polar cusp and seasonal variations explained by the Russell-McPherron effect.

[1]  Yoshiharu Omura,et al.  Long‐term occurrence probabilities of intense geomagnetic storm events , 2007 .

[2]  E. Falayi,et al.  Investigation of geomagnetic induced current at high latitude during the storm-time variation , 2017 .

[3]  Mingguang Liu,et al.  Analysis of the monitoring data of geomagnetic storm interference in the electrification system of a high‐speed railway , 2016 .

[4]  Zhanqing Li,et al.  Analysis of cloud layer structure in Shouxian, China using RS92 radiosonde aided by 95 GHz cloud radar , 2010 .

[5]  Extreme value analysis of the time derivative of the horizontal magnetic field and computed electric field , 2016 .

[6]  H. Lühr,et al.  SWMF simulation of field-aligned currents for a varying northward and duskward IMF with nonzero dipole tilt , 2008 .

[7]  K. Nykyri,et al.  Statistical study of the ULF Pc4-Pc5 range fluctuations in the vicinity of Earth's magnetopause and correlation with the Low Latitude Boundary Layer thickness , 2016 .

[8]  John G. Kappenman,et al.  Great geomagnetic storms and extreme impulsive geomagnetic field disturbance events – An analysis of observational evidence including the great storm of May 1921 , 2006 .

[9]  D. Sibeck,et al.  Occurrence patterns for transient magnetic field signatures at high latitudes , 1996 .

[10]  H. Koons Statistical analysis of extreme values in space science , 2001 .

[11]  A. Thomson,et al.  April 2000 geomagnetic storm: ionospheric drivers of large geomagnetically induced currents , 2002 .

[12]  H. Lühr,et al.  Statistical study of the substorm onset: its dependence on solar wind parameters and solar illumination , 2005 .

[13]  Antti Pulkkinen,et al.  Time derivative of the horizontal geomagnetic field as an activity indicator , 2001 .

[14]  David Boteler,et al.  Comparison of methods for modelling geomagnetically induced currents , 2014 .

[15]  J. J. Zhang,et al.  GIC due to storm sudden commencement in low‐latitude high‐voltage power network in China: Observation and simulation , 2015 .

[16]  Hao Tian,et al.  Geomagnetic Storms’ Influence on Intercity Railway Track Circuit , 2016 .

[17]  T. Kikuchi,et al.  Magnetic latitude and local time dependence of the amplitude of geomagnetic sudden commencements , 2008 .

[18]  Geomagnetic Disturbance Characterization in the Hydro-Quebec Power System using AUTUMNX Data , 2018 .

[19]  S. Wing,et al.  A new magnetic coordinate system for conjugate studies at high latitudes , 1989 .

[20]  M. Angling,et al.  Using Extreme Value Theory for Determining the Probability of Carrington‐Like Solar Flares , 2016, 1604.03325.

[21]  C. Meng,et al.  Some low‐altitude cusp dependencies on the interplanetary magnetic field , 1989 .

[22]  T. P. O’Brien,et al.  Extreme electron fluxes in the outer zone , 2007 .

[23]  Juan V. Rodriguez,et al.  Extreme relativistic electron fluxes at geosynchronous orbit: Analysis of GOES E > 2 MeV electrons , 2015 .

[24]  C. T. Russell,et al.  Initial ISEE magnetometer results: magnetopause observations , 1978 .

[25]  D. Sibeck Transient magnetic field signatures at high latitudes , 1993 .

[26]  G. Vasseur,et al.  Bimodal electromagnetic induction in non-uniform thin sheets with an application to the northern Pyrenean induction anomaly , 1977 .

[27]  X. Chen,et al.  Global‐Scale ULF Waves Associated With SSC Accelerate Magnetospheric Ultrarelativistic Electrons , 2019, Journal of Geophysical Research: Space Physics.

[28]  L. Cagniard Basic theory of the magneto-telluric method of geophysical prospecting , 1953 .

[29]  Eric P. Smith,et al.  An Introduction to Statistical Modeling of Extreme Values , 2002, Technometrics.

[30]  V. M. Silrergleit On the occurrence of geomagnetic storms with sudden commencements , 1996 .

[31]  B. A. Conway,et al.  The effects of laforin, malin, Stbd1, and Ptg deficiencies on heart glycogen levels in Pompe disease mouse models , 2015 .

[32]  David Boteler,et al.  Effects of strong geomagnetic storms on Northern railways in Russia , 2010 .

[33]  Jeffrey J. Love,et al.  Global statistical maps of extreme‐event magnetic observatory 1 min first differences in horizontal intensity , 2016 .

[34]  Henty Root Earth-Current Effects on Communication-Cable Power Subsystems , 1979, IEEE Transactions on Electromagnetic Compatibility.

[35]  I. J. Rae,et al.  Ground-based Pc5 ULF wave power: Solar wind speed and MLT dependence , 2009 .

[36]  V. Pilipenko,et al.  Impulsive disturbances of the geomagnetic field as a cause of induced currents of electric power lines , 2019, Journal of Space Weather and Space Climate.

[37]  N. A. Gross,et al.  Understanding Space Weather and the Physics Behind It , 2011 .

[38]  K. Nykyri,et al.  Kelvin–Helmholtz Instability: Lessons Learned and Ways Forward , 2018, Space Science Reviews.

[39]  A. Maute,et al.  Sq and EEJ—A Review on the Daily Variation of the Geomagnetic Field Caused by Ionospheric Dynamo Currents , 2017 .

[40]  Alan W. P. Thomson,et al.  Quantifying extreme behavior in geomagnetic activity , 2011 .

[41]  Charles Trevor Gaunt,et al.  Present day challenges in understanding the geomagnetic hazard to national power grids , 2010 .

[42]  D. Boteler,et al.  Assessment of GIC risk due to geomagnetic sudden commencements and identification of the current systems responsible , 2014 .

[43]  David G. Sibeck,et al.  Observation of IMF and seasonal effects in the location of auroral substorm onset , 2001 .

[44]  Risto Pirjola,et al.  Review On The Calculation Of Surface Electric And Magnetic Fields And Of Geomagnetically Induced Currents In Ground-Based Technological Systems , 2002 .

[45]  G. Siscoe,et al.  On the statistics of the largest geomagnetic storms per solar cycle , 1976 .

[46]  Brian Hamilton,et al.  International Geomagnetic Reference Field: the 12th generation , 2015, Earth, Planets and Space.

[47]  OzturkCelal,et al.  A comprehensive survey , 2014 .

[48]  V. Silbergleit Forecast of the most geomagnetically disturbed days , 1999 .

[49]  A. Thomson,et al.  A Global Climatological Model of 2 Extreme Geomagnetic Field 3 Fluctuations 4 , 2020 .

[50]  Antti Pulkkinen,et al.  Recordings and occurrence of geomagnetically induced currents in the Finnish natural gas pipeline network , 2001 .

[51]  Kefei Zhang,et al.  Interplanetary shocks and the resulting geomagnetically induced currents at the equator , 2015 .

[52]  Katherine Campbell Statistical Analysis of Extreme Values , 2002, Technometrics.

[53]  Saralees Nadarajah,et al.  Extreme Value Analysis , 2006 .

[54]  C.T. Gaunt,et al.  Transformer failures in regions incorrectly considered to have low GIC-risk , 2007, 2007 IEEE Lausanne Power Tech.

[55]  John G. Kappenman,et al.  The Evolving Vulnerability of Electric Power Grids , 2004 .

[56]  D. Mccomas,et al.  Predicting interplanetary magnetic field (IMF) propagation delay times using the minimum variance technique , 2003 .

[57]  H. Rème,et al.  Observations of the cusp region under northward IMF , 2001 .

[58]  Y. Pawitan In all likelihood : statistical modelling and inference using likelihood , 2002 .

[59]  Q. Zong,et al.  Seasonal and diurnal variation of geomagnetic activity: Russell‐McPherron effect during different IMF polarity and/or extreme solar wind conditions , 2012 .

[60]  C. Beggan,et al.  Prediction of extreme geomagnetically induced currents in the UK high‐voltage network , 2013 .

[61]  Masao Nakamura,et al.  Statistical analysis of extreme auroral electrojet indices , 2015, Earth, Planets and Space.

[62]  Jesper Gjerloev,et al.  The large‐scale current system during auroral substorms , 2014 .

[63]  Carol G. Maclennan,et al.  Studies of large-scale earth potentials across oceanic distances , 1995, AT&T Technical Journal.

[65]  William J. Hinze,et al.  Introduction to Geomagnetic Fields , 2003 .

[66]  R. Pirjola,et al.  Space weather risk in power systems and pipelines , 2000 .

[67]  K. Kabin,et al.  Internal reconnection for northward interplanetary magnetic field , 2005 .

[68]  V. Pilipenko,et al.  Geomagnetic and ionospheric response to the interplanetary shock on January 24, 2012 , 2017, Earth, Planets and Space.

[69]  J. Burch,et al.  Spatial extent of the plasma injection region in the cusp-magnetosheath interface , 1988 .

[70]  Simon G. Shepherd,et al.  Altitude‐adjusted corrected geomagnetic coordinates: Definition and functional approximations , 2014 .

[71]  Magnus Wik,et al.  Solar wind driven empirical forecast models of the time derivative of the ground magnetic field , 2015 .

[72]  V. De la Luz,et al.  Extreme Value Analysis of Solar Flare Events , 2018, Space Weather.

[73]  David Boteler,et al.  Modeling geomagnetically induced currents , 2017 .

[74]  R. Pirjola,et al.  Geomagnetically induced currents in an electric power transmission system at low latitudes in Brazil: A case study , 2007 .

[75]  M. W. Dunlop,et al.  Energetic electron response to ULF waves induced by interplanetary shocks in the outer radiation belt , 2009 .

[76]  O. Kozyreva,et al.  Ground geomagnetic field and GIC response to March 17, 2015, storm , 2018, Earth, Planets and Space.

[77]  D. Boteler Geomagnetic Effects on the Pipe-To-Soil Potentials of A Continental Pipeline , 2000 .

[78]  Christopher T. Russell,et al.  Initial ISEE magnetometer results - Magnetopause observations , 1978 .

[79]  David Boteler,et al.  The effects of geomagnetic disturbances on electrical systems at the earth's surface , 1998 .

[80]  B. Anderson,et al.  Overview of Solar Wind–Magnetosphere–Ionosphere–Atmosphere Coupling and the Generation of Magnetospheric Currents , 2017 .

[81]  C. Beggan,et al.  Generation of 100‐year geomagnetically induced current scenarios , 2012 .

[82]  R. Hoffman,et al.  Statistical description of the bulge-type auroral substorm in the far ultraviolet , 2007 .

[83]  Eric Donovan,et al.  A comprehensive survey of auroral latitude Pc5 pulsation characteristics , 2003 .

[84]  S. Vennerstrom Dayside magnetic ULF power at high latitudes: A possible long‐term proxy for the solar wind velocity? , 1999 .

[85]  R. S. Weigel,et al.  Probability distribution invariance of 1‐minute auroral‐zone geomagnetic field fluctuations , 2003 .

[86]  David H. Boteler,et al.  Assessment of extreme values in geomagnetic and geoelectric field variations for Canada , 2016 .

[87]  Tom Molinski,et al.  Why utilities respect geomagnetically induced currents , 2002 .

[88]  S. Matsushita Sq and L Current Systems in the Ionosphere , 2007 .

[89]  C. Russell,et al.  Sudden impulses at low latitude stations: Steady state response for southward interplanetary magnetic field , 1994 .

[90]  Michael E. Brown,et al.  Introduction to Space Physics , 1995 .

[91]  S. Chapman,et al.  A new theory of magnetic storms , 1931 .

[92]  David Gleicher A Statistical Study , 2006 .

[93]  David Beamish,et al.  Geomagnetically induced currents in the UK: geomagnetic variations and surface electric fields , 2002 .

[94]  O. Yagodkina,et al.  Morphological features of bipolar magnetic impulsive events and associated interplanetary medium signatures , 1999 .

[95]  Robert L. McPherron,et al.  Semiannual variation of geomagnetic activity , 1973 .

[96]  J. Kappenman,et al.  Management of the geomagnetically induced current risks on the national grid company's electric power transmission system , 2002 .

[97]  K. Glassmeier,et al.  The dependence of high‐latitude PcS wave power on solar wind velocity and on the phase of high‐speed solar wind streams , 1998 .

[98]  X. Zhang,et al.  ULF waves excited by negative/positive solar wind dynamic pressure impulses at geosynchronous orbit , 2010 .

[99]  B. Lavraud,et al.  Multi‐instrument observations from Svalbard of a traveling convection vortex, electromagnetic ion cyclotron wave burst, and proton precipitation associated with a bow shock instability , 2013 .

[100]  Jesper Gjerloev,et al.  The SuperMAG data processing technique , 2012 .

[101]  G. Crowley,et al.  Extended study of extreme geoelectric field event scenarios for geomagnetically induced current applications , 2013 .

[102]  John G. Kappenman,et al.  Storm sudden commencement events and the associated geomagnetically induced current risks to ground‐based systems at low‐latitude and midlatitude locations , 2003 .

[103]  C. R. Clauer,et al.  Ionospheric traveling convection vortices observed near the polar cleft: A triggered response to sudden changes in the solar wind , 1988 .

[104]  D. Weimer,et al.  Quantitative maps of geomagnetic perturbation vectors during substorm onset and recovery , 2015, Journal of geophysical research. Space physics.

[105]  L. Lanzerotti,et al.  Cusp latitude magnetic impulse events: 1. Occurrence statistics , 1991 .

[106]  E. Smith,et al.  Geomagnetically induced currents in the New Zealand power network , 2012 .

[107]  J. Gjerloev A Global Ground‐Based Magnetometer Initiative , 2009 .

[108]  R. Hunsucker,et al.  The High-Latitude Ionosphere and Its Effects on Radio Propagation , 2002 .

[109]  Magnus Wik,et al.  Space weather events in July 1982 and October 2003 and the effects of geomagnetically induced currents on Swedish technical systems , 2009 .